6aw3: Difference between revisions

m Protected "6aw3" [edit=sysop:move=sysop]
No edit summary
Line 1: Line 1:
'''Unreleased structure'''


The entry 6aw3 is ON HOLD until Paper Publication
==Crystal structure of the HopQ-CEACAM3 L44Q complex==
<StructureSection load='6aw3' size='340' side='right' caption='[[6aw3]], [[Resolution|resolution]] 2.66&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[6aw3]] is a 2 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6AW3 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6AW3 FirstGlance]. <br>
</td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6aw3 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6aw3 OCA], [http://pdbe.org/6aw3 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6aw3 RCSB], [http://www.ebi.ac.uk/pdbsum/6aw3 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6aw3 ProSAT]</span></td></tr>
</table>
== Function ==
[[http://www.uniprot.org/uniprot/CEAM3_HUMAN CEAM3_HUMAN]] Major granulocyte receptor mediating recognition and efficient opsonin-independent phagocytosis of CEACAM-binding microorganisms, including Neissiria, Moxarella and Haemophilus species, thus playing an important role in the clearance of pathogens by the innate immune system. Responsible for RAC1 stimulation in the course of pathogen phagocytosis.<ref>PMID:12864848</ref> <ref>PMID:14707113</ref>  
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Helicobacter pylori infects half of the world's population, and strains that encode the cag type IV secretion system for injection of the oncoprotein CagA into host gastric epithelial cells are associated with elevated levels of cancer. CagA translocation into host cells is dependent on interactions between the H. pylori adhesin protein HopQ and human CEACAMs. Here, we present high-resolution structures of several HopQ-CEACAM complexes and CEACAMs in their monomeric and dimeric forms establishing that HopQ uses a coupled folding and binding mechanism to engage the canonical CEACAM dimerization interface for CEACAM recognition. By combining mutagenesis with biophysical and functional analyses, we show that the modes of CEACAM recognition by HopQ and CEACAMs themselves are starkly different. Our data describe precise molecular mechanisms by which microbes exploit host CEACAMs for infection and enable future development of novel oncoprotein translocation inhibitors and H. pylori-specific antimicrobial agents.


Authors: Bonsor, D.A., Sundberg, E.J.
The Helicobacter pylori adhesin protein HopQ exploits the dimer interface of human CEACAMs to facilitate translocation of the oncoprotein CagA.,Bonsor DA, Zhao Q, Schmidinger B, Weiss E, Wang J, Deredge D, Beadenkopf R, Dow B, Fischer W, Beckett D, Wintrode PL, Haas R, Sundberg EJ EMBO J. 2018 May 3. pii: embj.201798664. doi: 10.15252/embj.201798664. PMID:29724755<ref>PMID:29724755</ref>


Description: Crystal structure of the HopQ-CEACAM3 L44Q complex
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
[[Category: Unreleased Structures]]
</div>
[[Category: Bonsor, D.A]]
<div class="pdbe-citations 6aw3" style="background-color:#fffaf0;"></div>
[[Category: Sundberg, E.J]]
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Bonsor, D A]]
[[Category: Sundberg, E J]]
[[Category: Cell adhesion]]

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA