5lv3: Difference between revisions
No edit summary |
No edit summary |
||
Line 11: | Line 11: | ||
== Function == | == Function == | ||
[[http://www.uniprot.org/uniprot/CARM1_MOUSE CARM1_MOUSE]] Methylates (mono- and asymmetric dimethylation) the guanidino nitrogens of arginyl residues in several proteins involved in DNA packaging, transcription regulation, pre-mRNA splicing, and mRNA stability. Recruited to promoters upon gene activation together with histone acetyltransferases from EP300/P300 and p160 families, methylates histone H3 at 'Arg-17' (H3R17me), forming mainly asymmetric dimethylarginine (H3R17me2a), leading to activates transcription via chromatin remodeling. During nuclear hormone receptor activation and TCF7L2/TCF4 activation, acts synergically with EP300/P300 and either one of the p160 histone acetyltransferases NCOA1/SRC1, NCOA2/GRIP1 and NCOA3/ACTR or CTNNB1/beta-catenin to activate transcription. During myogenic transcriptional activation, acts together with NCOA3/ACTR as a coactivator for MEF2C. During monocyte inflammatory stimulation, acts together with EP300/P300 as a coactivator for NF-kappa-B. Acts as coactivator for PPARG, promotes adipocyte differentiation and the accumulation of brown fat tissue. Plays a role in the regulation of pre-mRNA alternative splicing by methylation of splicing factors. Also seems to be involved in p53/TP53 transcriptional activation. Methylates EP300/P300, both at 'Arg-2142', which may loosen its interaction with NCOA2/GRIP1, and at 'Arg-580' and 'Arg-604' in the KIX domain, which impairs its interaction with CREB and inhibits CREB-dependent transcriptional activation. Also methylates arginine residues in RNA-binding proteins PABPC1, ELAVL1 and ELAV4, which may affect their mRNA-stabilizing properties and the half-life of their target mRNAs.<ref>PMID:10381882</ref> <ref>PMID:11341840</ref> <ref>PMID:11701890</ref> <ref>PMID:11713257</ref> <ref>PMID:11983685</ref> <ref>PMID:11997499</ref> <ref>PMID:12756295</ref> <ref>PMID:14966289</ref> <ref>PMID:15186775</ref> <ref>PMID:15616592</ref> <ref>PMID:16322096</ref> <ref>PMID:17218272</ref> <ref>PMID:17882261</ref> <ref>PMID:18188184</ref> <ref>PMID:19843527</ref> <ref>PMID:19897492</ref> <ref>PMID:21138967</ref> | [[http://www.uniprot.org/uniprot/CARM1_MOUSE CARM1_MOUSE]] Methylates (mono- and asymmetric dimethylation) the guanidino nitrogens of arginyl residues in several proteins involved in DNA packaging, transcription regulation, pre-mRNA splicing, and mRNA stability. Recruited to promoters upon gene activation together with histone acetyltransferases from EP300/P300 and p160 families, methylates histone H3 at 'Arg-17' (H3R17me), forming mainly asymmetric dimethylarginine (H3R17me2a), leading to activates transcription via chromatin remodeling. During nuclear hormone receptor activation and TCF7L2/TCF4 activation, acts synergically with EP300/P300 and either one of the p160 histone acetyltransferases NCOA1/SRC1, NCOA2/GRIP1 and NCOA3/ACTR or CTNNB1/beta-catenin to activate transcription. During myogenic transcriptional activation, acts together with NCOA3/ACTR as a coactivator for MEF2C. During monocyte inflammatory stimulation, acts together with EP300/P300 as a coactivator for NF-kappa-B. Acts as coactivator for PPARG, promotes adipocyte differentiation and the accumulation of brown fat tissue. Plays a role in the regulation of pre-mRNA alternative splicing by methylation of splicing factors. Also seems to be involved in p53/TP53 transcriptional activation. Methylates EP300/P300, both at 'Arg-2142', which may loosen its interaction with NCOA2/GRIP1, and at 'Arg-580' and 'Arg-604' in the KIX domain, which impairs its interaction with CREB and inhibits CREB-dependent transcriptional activation. Also methylates arginine residues in RNA-binding proteins PABPC1, ELAVL1 and ELAV4, which may affect their mRNA-stabilizing properties and the half-life of their target mRNAs.<ref>PMID:10381882</ref> <ref>PMID:11341840</ref> <ref>PMID:11701890</ref> <ref>PMID:11713257</ref> <ref>PMID:11983685</ref> <ref>PMID:11997499</ref> <ref>PMID:12756295</ref> <ref>PMID:14966289</ref> <ref>PMID:15186775</ref> <ref>PMID:15616592</ref> <ref>PMID:16322096</ref> <ref>PMID:17218272</ref> <ref>PMID:17882261</ref> <ref>PMID:18188184</ref> <ref>PMID:19843527</ref> <ref>PMID:19897492</ref> <ref>PMID:21138967</ref> | ||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
DNA, RNA and histone methylation is implicated in various human diseases such as cancer or viral infections, playing a major role in cell process regulation, especially in modulation of gene expression. Here we developed a convergent synthetic pathway starting from a protected bromomethylcytosine derivative to synthesize transition state analogues of the DNA methyltransferases. This approach led to seven 5-methylcytosine-adenosine compounds that were, surprisingly, inactive against hDNMT1, hDNMT3Acat, TRDMT1 and other RNA human and viral methyltransferases. Interestingly, compound 4 and its derivative 2 showed an inhibitory activity against PRMT4 in the micromolar range. Crystal structures showed that compound 4 binds to the PRMT4 active site, displacing strongly the S-adenosyl-l-methionine cofactor, occupying its binding site, and interacting with the arginine substrate site through the cytosine moiety that probes the space filled by a substrate peptide methylation intermediate. Furthermore, the binding of the compounds induces important structural switches. These findings open new routes for the conception of new potent PRMT4 inhibitors based on the 5-methylcytosine-adenosine scaffold.This article is part of a discussion meeting issue 'Frontiers in epigenetic chemical biology'. | |||
Hijacking DNA methyltransferase transition state analogues to produce chemical scaffolds for PRMT inhibitors.,Halby L, Marechal N, Pechalrieu D, Cura V, Franchini DM, Faux C, Alby F, Troffer-Charlier N, Kudithipudi S, Jeltsch A, Aouadi W, Decroly E, Guillemot JC, Page P, Ferroud C, Bonnefond L, Guianvarc'h D, Cavarelli J, Arimondo PB Philos Trans R Soc Lond B Biol Sci. 2018 Jun 5;373(1748). pii: rstb.2017.0072., doi: 10.1098/rstb.2017.0072. PMID:29685976<ref>PMID:29685976</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 5lv3" style="background-color:#fffaf0;"></div> | |||
== References == | == References == | ||
<references/> | <references/> |