1uer: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==Crystal structure of Porphyromonas gingivalis SOD== | ==Crystal structure of Porphyromonas gingivalis SOD== | ||
<StructureSection load='1uer' size='340' side='right' caption='[[1uer]], [[Resolution|resolution]] 1.60Å' scene=''> | <StructureSection load='1uer' size='340' side='right' caption='[[1uer]], [[Resolution|resolution]] 1.60Å' scene=''> | ||
Line 6: | Line 7: | ||
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1ues|1ues]]</td></tr> | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1ues|1ues]]</td></tr> | ||
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Superoxide_dismutase Superoxide dismutase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.15.1.1 1.15.1.1] </span></td></tr> | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Superoxide_dismutase Superoxide dismutase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.15.1.1 1.15.1.1] </span></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1uer FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1uer OCA], [http://pdbe.org/1uer PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1uer RCSB], [http://www.ebi.ac.uk/pdbsum/1uer PDBsum]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1uer FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1uer OCA], [http://pdbe.org/1uer PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1uer RCSB], [http://www.ebi.ac.uk/pdbsum/1uer PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=1uer ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
Line 14: | Line 15: | ||
Check<jmol> | Check<jmol> | ||
<jmolCheckbox> | <jmolCheckbox> | ||
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ue/1uer_consurf.spt"</scriptWhenChecked> | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ue/1uer_consurf.spt"</scriptWhenChecked> | ||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
<text>to colour the structure by Evolutionary Conservation</text> | <text>to colour the structure by Evolutionary Conservation</text> |
Revision as of 11:06, 28 March 2018
Crystal structure of Porphyromonas gingivalis SODCrystal structure of Porphyromonas gingivalis SOD
Structural highlights
Function[SODF_PORGI] Destroys superoxide anion radicals which are normally produced within the cells and which are toxic to biological systems. Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedGlycine 155, which is located approximately 10 A from the active metal sites, is mostly conserved in aligned amino acid sequences of manganese-specific superoxide dismutases (Mn-SODs) and cambialistic SOD (showing the same activity with Fe and Mn) from Porphyromonas gingivalis, but is substituted for threonine in most Fe-SODs. Since Thr155 is located between Trp123 and Trp125, and Trp123 is one member of the metal-surrounding aromatic amino acids, there is a possibility that the conversion of this amino acid may cause a conversion of the metal-specific activity of cambialistic P. gingivalis SOD. To clarify this possibility, we have prepared a mutant of the P. gingivalis SOD with conversion of Gly155 to Thr. The ratios of the specific activities of Fe- to Mn-reconstituted enzyme, which are measured by the xanthine oxidase/cytochrome c method, increased from 0.6 in the wild-type to 11.2 in the mutant SODs, indicating the conversion of the metal-specific activity of the enzyme from a cambialistic type to an Fe-specific type. The visible absorption spectra of the Fe- and Mn-reconstituted mutant SODs closely resembled those of Fe-specific SOD. Furthermore, the EPR spectra of the Fe- and Mn-reconstituted mutant SODs also closely resembled those of Fe-specific SOD. Three-dimensional structures of the Fe-reconstituted wild-type SOD and Mn-reconstituted mutant SOD have been determined at 1.6 A resolution. Both structures have identical conformations, orientations of residues involved in metal binding, and hydrogen bond networks, while the side chain of Trp123 is moved further toward the metal-binding site than in wild-type SOD. A possible contribution of the structural differences to the conversion of the metal-specific activity through rearrangement of the hydrogen bond network among Trp123, Gln70, Tyr35, and the metal-coordinated solvent is discussed. Pronounced conversion of the metal-specific activity of superoxide dismutase from Porphyromonas gingivalis by the mutation of a single amino acid (Gly155Thr) located apart from the active site.,Yamakura F, Sugio S, Hiraoka BY, Ohmori D, Yokota T Biochemistry. 2003 Sep 16;42(36):10790-9. PMID:12962504[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|