1u7b: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
==Crystal structure of hPCNA bound to residues 331-350 of the flap endonuclease-1 (FEN1)==
==Crystal structure of hPCNA bound to residues 331-350 of the flap endonuclease-1 (FEN1)==
<StructureSection load='1u7b' size='340' side='right' caption='[[1u7b]], [[Resolution|resolution]] 1.88&Aring;' scene=''>
<StructureSection load='1u7b' size='340' side='right' caption='[[1u7b]], [[Resolution|resolution]] 1.88&Aring;' scene=''>
Line 4: Line 5:
<table><tr><td colspan='2'>[[1u7b]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1U7B OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1U7B FirstGlance]. <br>
<table><tr><td colspan='2'>[[1u7b]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1U7B OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1U7B FirstGlance]. <br>
</td></tr><tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">PCNA ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr>
</td></tr><tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">PCNA ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1u7b FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1u7b OCA], [http://pdbe.org/1u7b PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1u7b RCSB], [http://www.ebi.ac.uk/pdbsum/1u7b PDBsum]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1u7b FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1u7b OCA], [http://pdbe.org/1u7b PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1u7b RCSB], [http://www.ebi.ac.uk/pdbsum/1u7b PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=1u7b ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
Line 12: Line 13:
Check<jmol>
Check<jmol>
   <jmolCheckbox>
   <jmolCheckbox>
     <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/u7/1u7b_consurf.spt"</scriptWhenChecked>
     <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/u7/1u7b_consurf.spt"</scriptWhenChecked>
     <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
     <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
     <text>to colour the structure by Evolutionary Conservation</text>
     <text>to colour the structure by Evolutionary Conservation</text>

Revision as of 12:02, 21 March 2018

Crystal structure of hPCNA bound to residues 331-350 of the flap endonuclease-1 (FEN1)Crystal structure of hPCNA bound to residues 331-350 of the flap endonuclease-1 (FEN1)

Structural highlights

1u7b is a 2 chain structure with sequence from Human. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Gene:PCNA (HUMAN)
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

[PCNA_HUMAN] Auxiliary protein of DNA polymerase delta and is involved in the control of eukaryotic DNA replication by increasing the polymerase's processibility during elongation of the leading strand. Induces a robust stimulatory effect on the 3'-5' exonuclease and 3'-phosphodiesterase, but not apurinic-apyrimidinic (AP) endonuclease, APEX2 activities. Has to be loaded onto DNA in order to be able to stimulate APEX2. Plays a key role in DNA damage response (DDR) by being conveniently positioned at the replication fork to coordinate DNA replication with DNA repair and DNA damage tolerance pathways. Acts as a loading platform to recruit DDR proteins that allow completion of DNA replication after DNA damage and promote postreplication repair: Monoubiquitinated PCNA leads to recruitment of translesion (TLS) polymerases, while 'Lys-63'-linked polyubiquitination of PCNA is involved in error-free pathway and employs recombination mechanisms to synthesize across the lesion.[1] [2] [FEN1_HUMAN] Structure-specific nuclease with 5'-flap endonuclease and 5'-3' exonuclease activities involved in DNA replication and repair. During DNA replication, cleaves the 5'-overhanging flap structure that is generated by displacement synthesis when DNA polymerase encounters the 5'-end of a downstream Okazaki fragment. It enters the flap from the 5'-end and then tracks to cleave the flap base, leaving a nick for ligation. Also involved in the long patch base excision repair (LP-BER) pathway, by cleaving within the apurinic/apyrimidinic (AP) site-terminated flap. Acts as a genome stabilization factor that prevents flaps from equilibrating into structurs that lead to duplications and deletions. Also possesses 5'-3' exonuclease activity on nicked or gapped double-stranded DNA, and exhibits RNase H activity. Also involved in replication and repair of rDNA and in repairing mitochondrial DNA.[3] [4] [5] [6] [7] [8]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Human Proliferating Cellular Nuclear Antigen (hPCNA), a member of the sliding clamp family of proteins, makes specific protein-protein interactions with DNA replication and repair proteins through a small peptide motif termed the PCNA-interacting protein, or PIP-box. We solved the structure of hPCNA bound to PIP-box-containing peptides from the p66 subunit of the human replicative DNA polymerase-delta (452-466) at 2.6 A and of the flap endonuclease (FEN1) (331-350) at 1.85 A resolution. Both structures demonstrate that the pol-delta p66 and FEN1 peptides interact with hPCNA at the same site shown to bind the cdk-inhibitor p21(CIP1). Binding studies indicate that peptides from the p66 subunit of the pol-delta holoenzyme and FEN1 bind hPCNA from 189- to 725-fold less tightly than those of p21. Thus, the PIP-box and flanking regions provide a small docking peptide whose affinities can be readily adjusted in accord with biological necessity to mediate the binding of DNA replication and repair proteins to hPCNA.

Structural and thermodynamic analysis of human PCNA with peptides derived from DNA polymerase-delta p66 subunit and flap endonuclease-1.,Bruning JB, Shamoo Y Structure. 2004 Dec;12(12):2209-19. PMID:15576034[9]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Burkovics P, Hajdu I, Szukacsov V, Unk I, Haracska L. Role of PCNA-dependent stimulation of 3'-phosphodiesterase and 3'-5' exonuclease activities of human Ape2 in repair of oxidative DNA damage. Nucleic Acids Res. 2009 Jul;37(13):4247-55. doi: 10.1093/nar/gkp357. Epub 2009, May 13. PMID:19443450 doi:10.1093/nar/gkp357
  2. Motegi A, Liaw HJ, Lee KY, Roest HP, Maas A, Wu X, Moinova H, Markowitz SD, Ding H, Hoeijmakers JH, Myung K. Polyubiquitination of proliferating cell nuclear antigen by HLTF and SHPRH prevents genomic instability from stalled replication forks. Proc Natl Acad Sci U S A. 2008 Aug 26;105(34):12411-6. Epub 2008 Aug 21. PMID:18719106 doi:0805685105
  3. Robins P, Pappin DJ, Wood RD, Lindahl T. Structural and functional homology between mammalian DNase IV and the 5'-nuclease domain of Escherichia coli DNA polymerase I. J Biol Chem. 1994 Nov 18;269(46):28535-8. PMID:7961795
  4. Shen B, Nolan JP, Sklar LA, Park MS. Essential amino acids for substrate binding and catalysis of human flap endonuclease 1. J Biol Chem. 1996 Apr 19;271(16):9173-6. PMID:8621570
  5. Tom S, Henricksen LA, Bambara RA. Mechanism whereby proliferating cell nuclear antigen stimulates flap endonuclease 1. J Biol Chem. 2000 Apr 7;275(14):10498-505. PMID:10744741
  6. Qiu J, Bimston DN, Partikian A, Shen B. Arginine residues 47 and 70 of human flap endonuclease-1 are involved in DNA substrate interactions and cleavage site determination. J Biol Chem. 2002 Jul 5;277(27):24659-66. Epub 2002 May 1. PMID:11986308 doi:http://dx.doi.org/10.1074/jbc.M111941200
  7. Guo Z, Qian L, Liu R, Dai H, Zhou M, Zheng L, Shen B. Nucleolar localization and dynamic roles of flap endonuclease 1 in ribosomal DNA replication and damage repair. Mol Cell Biol. 2008 Jul;28(13):4310-9. doi: 10.1128/MCB.00200-08. Epub 2008 Apr, 28. PMID:18443037 doi:http://dx.doi.org/10.1128/MCB.00200-08
  8. Guo Z, Zheng L, Xu H, Dai H, Zhou M, Pascua MR, Chen QM, Shen B. Methylation of FEN1 suppresses nearby phosphorylation and facilitates PCNA binding. Nat Chem Biol. 2010 Oct;6(10):766-73. doi: 10.1038/nchembio.422. Epub 2010 Aug, 22. PMID:20729856 doi:http://dx.doi.org/10.1038/nchembio.422
  9. Bruning JB, Shamoo Y. Structural and thermodynamic analysis of human PCNA with peptides derived from DNA polymerase-delta p66 subunit and flap endonuclease-1. Structure. 2004 Dec;12(12):2209-19. PMID:15576034 doi:http://dx.doi.org/10.1016/j.str.2004.09.018

1u7b, resolution 1.88Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA