1ua0: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==Aminofluorene DNA adduct at the pre-insertion site of a DNA polymerase== | ==Aminofluorene DNA adduct at the pre-insertion site of a DNA polymerase== | ||
<StructureSection load='1ua0' size='340' side='right' caption='[[1ua0]], [[Resolution|resolution]] 2.10Å' scene=''> | <StructureSection load='1ua0' size='340' side='right' caption='[[1ua0]], [[Resolution|resolution]] 2.10Å' scene=''> | ||
Line 6: | Line 7: | ||
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1ua1|1ua1]]</td></tr> | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1ua1|1ua1]]</td></tr> | ||
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/DNA-directed_DNA_polymerase DNA-directed DNA polymerase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.7.7 2.7.7.7] </span></td></tr> | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/DNA-directed_DNA_polymerase DNA-directed DNA polymerase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.7.7 2.7.7.7] </span></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1ua0 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1ua0 OCA], [http://pdbe.org/1ua0 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1ua0 RCSB], [http://www.ebi.ac.uk/pdbsum/1ua0 PDBsum]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1ua0 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1ua0 OCA], [http://pdbe.org/1ua0 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1ua0 RCSB], [http://www.ebi.ac.uk/pdbsum/1ua0 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=1ua0 ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
Line 12: | Line 13: | ||
Check<jmol> | Check<jmol> | ||
<jmolCheckbox> | <jmolCheckbox> | ||
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ua/1ua0_consurf.spt"</scriptWhenChecked> | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ua/1ua0_consurf.spt"</scriptWhenChecked> | ||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
<text>to colour the structure by Evolutionary Conservation</text> | <text>to colour the structure by Evolutionary Conservation</text> |
Revision as of 11:59, 21 March 2018
Aminofluorene DNA adduct at the pre-insertion site of a DNA polymeraseAminofluorene DNA adduct at the pre-insertion site of a DNA polymerase
Structural highlights
Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedAromatic amines have been studied for more than a half-century as model carcinogens representing a class of chemicals that form bulky adducts to the C8 position of guanine in DNA. Among these guanine adducts, the N-(2'-deoxyguanosin-8-yl)-aminofluorene (G-AF) and N-2-(2'-deoxyguanosin-8-yl)-acetylaminofluorene (G-AAF) derivatives are the best studied. Although G-AF and G-AAF differ by only an acetyl group, they exert different effects on DNA replication by replicative and high-fidelity DNA polymerases. Translesion synthesis of G-AF is achieved with high-fidelity polymerases, whereas replication of G-AAF requires specialized bypass polymerases. Here we have presented structures of G-AF as it undergoes one round of accurate replication by a high-fidelity DNA polymerase. Nucleotide incorporation opposite G-AF is achieved in solution and in the crystal, revealing how the polymerase accommodates and replicates past G-AF, but not G-AAF. Like an unmodified guanine, G-AF adopts a conformation that allows it to form Watson-Crick hydrogen bonds with an opposing cytosine that results in protrusion of the bulky fluorene moiety into the major groove. Although incorporation opposite G-AF is observed, the C:G-AF base pair induces distortions to the polymerase active site that slow translesion synthesis. Observing translesion synthesis of an aromatic amine DNA adduct by a high-fidelity DNA polymerase.,Hsu GW, Kiefer JR, Burnouf D, Becherel OJ, Fuchs RP, Beese LS J Biol Chem. 2004 Nov 26;279(48):50280-5. Epub 2004 Sep 22. PMID:15385534[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|