5o84: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
<StructureSection load='5o84' size='340' side='right' caption='[[5o84]], [[Resolution|resolution]] 1.88Å' scene=''> | <StructureSection load='5o84' size='340' side='right' caption='[[5o84]], [[Resolution|resolution]] 1.88Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[5o84]] is a 1 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5O84 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5O84 FirstGlance]. <br> | <table><tr><td colspan='2'>[[5o84]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Arath Arath]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5O84 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5O84 FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ACT:ACETATE+ION'>ACT</scene>, <scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene>, <scene name='pdbligand=FMT:FORMIC+ACID'>FMT</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ACT:ACETATE+ION'>ACT</scene>, <scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene>, <scene name='pdbligand=FMT:FORMIC+ACID'>FMT</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> | ||
<tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=CSO:S-HYDROXYCYSTEINE'>CSO</scene>, <scene name='pdbligand=MHO:S-OXYMETHIONINE'>MHO</scene>, <scene name='pdbligand=OCS:CYSTEINESULFONIC+ACID'>OCS</scene>, <scene name='pdbligand=OMT:S-DIOXYMETHIONINE'>OMT</scene></td></tr> | <tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=CSO:S-HYDROXYCYSTEINE'>CSO</scene>, <scene name='pdbligand=MHO:S-OXYMETHIONINE'>MHO</scene>, <scene name='pdbligand=OCS:CYSTEINESULFONIC+ACID'>OCS</scene>, <scene name='pdbligand=OMT:S-DIOXYMETHIONINE'>OMT</scene></td></tr> | ||
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[6ep6|6ep6]], [[6ep7|6ep7]]</td></tr> | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[6ep6|6ep6]], [[6ep7|6ep7]]</td></tr> | ||
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">GSTU23, At1g78320, F3F9.14 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=3702 ARATH])</td></tr> | |||
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Glutathione_transferase Glutathione transferase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.5.1.18 2.5.1.18] </span></td></tr> | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Glutathione_transferase Glutathione transferase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.5.1.18 2.5.1.18] </span></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5o84 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5o84 OCA], [http://pdbe.org/5o84 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5o84 RCSB], [http://www.ebi.ac.uk/pdbsum/5o84 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5o84 ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5o84 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5o84 OCA], [http://pdbe.org/5o84 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5o84 RCSB], [http://www.ebi.ac.uk/pdbsum/5o84 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5o84 ProSAT]</span></td></tr> | ||
Line 25: | Line 26: | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: Arath]] | |||
[[Category: Glutathione transferase]] | [[Category: Glutathione transferase]] | ||
[[Category: Messens, J]] | [[Category: Messens, J]] |
Revision as of 09:57, 15 February 2018
Glutathione S-transferase Tau 23 (partially oxidized)Glutathione S-transferase Tau 23 (partially oxidized)
Structural highlights
Function[GSTUN_ARATH] May be involved in the conjugation of reduced glutathione to a wide number of exogenous and endogenous hydrophobic electrophiles and have a detoxification role against certain herbicides. Publication Abstract from PubMedBACKGROUND: Glutathione transferases play an important role as detoxifying enzymes. In A. thaliana, elevated levels of reactive oxygen species (ROS), provoked during biotic and abiotic stress, influence the activity of GSTU23. The aim of this study is to determine the impact of oxidative stress on the function and structure of GSTU23. METHODS: The impact of oxidation on the function of GSTU23 was studied using a glutathione transferase biochemical assay and mass spectrometry. With kinetics, circular dichroism and thermodynamics, we compared reduced with oxidized GSTU23. X-ray crystal structures of GSTU23 visualize the impacts of oxidation on methionines and cysteines. RESULTS: In the presence of 100muM H2O2, oxidation of the methionine side-chain to a sulfoxide is the prominent post-translational modification, which can be reduced by C. diphtheriae MsrA and MsrB. However, increasing the level to 200muM H2O2 results in a reversible intramolecular disulfide between Cys65-Cys110, which is substrate for glutaredoxin. Under these oxidizing conditions, GSTU23 undergoes a structural change and forms a more favourable enzyme-substrate complex to overcome kcat decrease. CONCLUSIONS AND SIGNIFICANCE: At lower H2O2 levels (100muM), GSTU23 forms methionine sulfoxides. Specifically, oxidation of Met14, located near the catalytic Ser13, could interfere with both GSH binding and catalytic activation. At higher H2O2 levels (200muM), the Cys65-Cys110 disulfide bond protects other cysteines and also methionines from overoxidation. This study shows the impact of oxidative stress on GSTU23 regulated by methionine sulfoxide reductases and glutaredoxin, and the mechanisms involved in maintaining its catalytic functionality under oxidizing conditions. Disulfide bond formation protects Arabidopsis thaliana glutathione transferase tau 23 from oxidative damage.,Tossounian MA, Van Molle I, Wahni K, Jacques S, Gevaert K, Van Breusegem F, Vertommen D, Young D, Rosado LA, Messens J Biochim Biophys Acta. 2017 Oct 11. pii: S0304-4165(17)30328-8. doi:, 10.1016/j.bbagen.2017.10.007. PMID:29031766[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|