5no7: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 3: Line 3:
<StructureSection load='5no7' size='340' side='right' caption='[[5no7]], [[Resolution|resolution]] 3.01&Aring;' scene=''>
<StructureSection load='5no7' size='340' side='right' caption='[[5no7]], [[Resolution|resolution]] 3.01&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[5no7]] is a 2 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5NO7 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5NO7 FirstGlance]. <br>
<table><tr><td colspan='2'>[[5no7]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Cinnabar-red_polypore Cinnabar-red polypore]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5NO7 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5NO7 FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=BMA:BETA-D-MANNOSE'>BMA</scene>, <scene name='pdbligand=MAN:ALPHA-D-MANNOSE'>MAN</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=BMA:BETA-D-MANNOSE'>BMA</scene>, <scene name='pdbligand=MAN:ALPHA-D-MANNOSE'>MAN</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">BN946_scf184298.g17 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=5643 Cinnabar-red polypore])</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5no7 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5no7 OCA], [http://pdbe.org/5no7 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5no7 RCSB], [http://www.ebi.ac.uk/pdbsum/5no7 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5no7 ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5no7 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5no7 OCA], [http://pdbe.org/5no7 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5no7 RCSB], [http://www.ebi.ac.uk/pdbsum/5no7 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5no7 ProSAT]</span></td></tr>
</table>
</table>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Wood biomass is the most abundant feedstock envisioned for the development of modern biorefineries. However, the cost-effective conversion of this form of biomass into commodity products is limited by its resistance to enzymatic degradation. Here we describe a new family of fungal lytic polysaccharide monooxygenases (LPMOs) prevalent among white-rot and brown-rot basidiomycetes that is active on xylans-a recalcitrant polysaccharide abundant in wood biomass. Two AA14 LPMO members from the white-rot fungus Pycnoporus coccineus substantially increase the efficiency of wood saccharification through oxidative cleavage of highly refractory xylan-coated cellulose fibers. The discovery of this unique enzyme activity advances our knowledge on the degradation of woody biomass in nature and offers an innovative solution for improving enzyme cocktails for biorefinery applications.
Lytic xylan oxidases from wood-decay fungi unlock biomass degradation.,Couturier M, Ladeveze S, Sulzenbacher G, Ciano L, Fanuel M, Moreau C, Villares A, Cathala B, Chaspoul F, Frandsen KE, Labourel A, Herpoel-Gimbert I, Grisel S, Haon M, Lenfant N, Rogniaux H, Ropartz D, Davies GJ, Rosso MN, Walton PH, Henrissat B, Berrin JG Nat Chem Biol. 2018 Jan 29. pii: nchembio.2558. doi: 10.1038/nchembio.2558. PMID:29377002<ref>PMID:29377002</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 5no7" style="background-color:#fffaf0;"></div>
== References ==
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Cinnabar-red polypore]]
[[Category: Berrin, J G]]
[[Category: Berrin, J G]]
[[Category: Couturier, M]]
[[Category: Couturier, M]]

Revision as of 09:39, 7 February 2018

Crystal Structure of a Xylan-active Lytic Polysaccharide Monooxygenase from Pycnoporus coccineus.Crystal Structure of a Xylan-active Lytic Polysaccharide Monooxygenase from Pycnoporus coccineus.

Structural highlights

5no7 is a 2 chain structure with sequence from Cinnabar-red polypore. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:, , ,
Gene:BN946_scf184298.g17 (Cinnabar-red polypore)
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Publication Abstract from PubMed

Wood biomass is the most abundant feedstock envisioned for the development of modern biorefineries. However, the cost-effective conversion of this form of biomass into commodity products is limited by its resistance to enzymatic degradation. Here we describe a new family of fungal lytic polysaccharide monooxygenases (LPMOs) prevalent among white-rot and brown-rot basidiomycetes that is active on xylans-a recalcitrant polysaccharide abundant in wood biomass. Two AA14 LPMO members from the white-rot fungus Pycnoporus coccineus substantially increase the efficiency of wood saccharification through oxidative cleavage of highly refractory xylan-coated cellulose fibers. The discovery of this unique enzyme activity advances our knowledge on the degradation of woody biomass in nature and offers an innovative solution for improving enzyme cocktails for biorefinery applications.

Lytic xylan oxidases from wood-decay fungi unlock biomass degradation.,Couturier M, Ladeveze S, Sulzenbacher G, Ciano L, Fanuel M, Moreau C, Villares A, Cathala B, Chaspoul F, Frandsen KE, Labourel A, Herpoel-Gimbert I, Grisel S, Haon M, Lenfant N, Rogniaux H, Ropartz D, Davies GJ, Rosso MN, Walton PH, Henrissat B, Berrin JG Nat Chem Biol. 2018 Jan 29. pii: nchembio.2558. doi: 10.1038/nchembio.2558. PMID:29377002[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Couturier M, Ladeveze S, Sulzenbacher G, Ciano L, Fanuel M, Moreau C, Villares A, Cathala B, Chaspoul F, Frandsen KE, Labourel A, Herpoel-Gimbert I, Grisel S, Haon M, Lenfant N, Rogniaux H, Ropartz D, Davies GJ, Rosso MN, Walton PH, Henrissat B, Berrin JG. Lytic xylan oxidases from wood-decay fungi unlock biomass degradation. Nat Chem Biol. 2018 Jan 29. pii: nchembio.2558. doi: 10.1038/nchembio.2558. PMID:29377002 doi:http://dx.doi.org/10.1038/nchembio.2558

5no7, resolution 3.01Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA