5mds: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 3: Line 3:
<StructureSection load='5mds' size='340' side='right' caption='[[5mds]], [[Resolution|resolution]] 2.60&Aring;' scene=''>
<StructureSection load='5mds' size='340' side='right' caption='[[5mds]], [[Resolution|resolution]] 2.60&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[5mds]] is a 3 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5MDS OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5MDS FirstGlance]. <br>
<table><tr><td colspan='2'>[[5mds]] is a 3 chain structure with sequence from [http://en.wikipedia.org/wiki/"achromobacter_harveyi"_johnson_and_shunk_1936 "achromobacter harveyi" johnson and shunk 1936]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5MDS OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5MDS FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene></td></tr>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene></td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">chiP ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=669 "Achromobacter harveyi" Johnson and Shunk 1936])</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5mds FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5mds OCA], [http://pdbe.org/5mds PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5mds RCSB], [http://www.ebi.ac.uk/pdbsum/5mds PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5mds ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5mds FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5mds OCA], [http://pdbe.org/5mds PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5mds RCSB], [http://www.ebi.ac.uk/pdbsum/5mds PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5mds ProSAT]</span></td></tr>
</table>
</table>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Chitin, an insoluble polymer of N-acetylglucosamine, is one of the most abundant biopolymers on Earth. By degrading chitin, chitinolytic bacteria such as Vibrio harveyi are critical for chitin recycling and maintenance of carbon and nitrogen cycles in the world's oceans. A decisive step in chitin degradation is the uptake of chito-oligosaccharides by an outer membrane protein channel named chitoporin (ChiP). Here, we report X-ray crystal structures of ChiP from V. harveyi in the presence and absence of chito-oligosaccharides. Structures without bound sugar reveal a trimeric assembly with an unprecedented closing of the transport pore by the N-terminus of a neighboring subunit. Substrate binding ejects the pore plug to open the transport channel. Together with molecular dynamics simulations, electrophysiology and in vitro transport assays our data provide an explanation for the exceptional affinity of ChiP for chito-oligosaccharides and point to an important role of the N-terminal gate in substrate transport.
Structural basis for chitin acquisition by marine Vibrio species.,Aunkham A, Zahn M, Kesireddy A, Pothula KR, Schulte A, Basle A, Kleinekathofer U, Suginta W, van den Berg B Nat Commun. 2018 Jan 15;9(1):220. doi: 10.1038/s41467-017-02523-y. PMID:29335469<ref>PMID:29335469</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 5mds" style="background-color:#fffaf0;"></div>
== References ==
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Achromobacter harveyi johnson and shunk 1936]]
[[Category: Berg, B van den]]
[[Category: Berg, B van den]]
[[Category: Zahn, M]]
[[Category: Zahn, M]]
[[Category: Outer membrane protein vibrio harveyi porin channel]]
[[Category: Outer membrane protein vibrio harveyi porin channel]]
[[Category: Sugar binding protein]]
[[Category: Sugar binding protein]]

Revision as of 23:40, 24 January 2018

Crystal structure of outer membrane expressed Chitoporin VhChip from Vibrio harveyi in complex with chitotetraoseCrystal structure of outer membrane expressed Chitoporin VhChip from Vibrio harveyi in complex with chitotetraose

Structural highlights

5mds is a 3 chain structure with sequence from "achromobacter_harveyi"_johnson_and_shunk_1936 "achromobacter harveyi" johnson and shunk 1936. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:
Gene:chiP ("Achromobacter harveyi" Johnson and Shunk 1936)
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Publication Abstract from PubMed

Chitin, an insoluble polymer of N-acetylglucosamine, is one of the most abundant biopolymers on Earth. By degrading chitin, chitinolytic bacteria such as Vibrio harveyi are critical for chitin recycling and maintenance of carbon and nitrogen cycles in the world's oceans. A decisive step in chitin degradation is the uptake of chito-oligosaccharides by an outer membrane protein channel named chitoporin (ChiP). Here, we report X-ray crystal structures of ChiP from V. harveyi in the presence and absence of chito-oligosaccharides. Structures without bound sugar reveal a trimeric assembly with an unprecedented closing of the transport pore by the N-terminus of a neighboring subunit. Substrate binding ejects the pore plug to open the transport channel. Together with molecular dynamics simulations, electrophysiology and in vitro transport assays our data provide an explanation for the exceptional affinity of ChiP for chito-oligosaccharides and point to an important role of the N-terminal gate in substrate transport.

Structural basis for chitin acquisition by marine Vibrio species.,Aunkham A, Zahn M, Kesireddy A, Pothula KR, Schulte A, Basle A, Kleinekathofer U, Suginta W, van den Berg B Nat Commun. 2018 Jan 15;9(1):220. doi: 10.1038/s41467-017-02523-y. PMID:29335469[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Aunkham A, Zahn M, Kesireddy A, Pothula KR, Schulte A, Basle A, Kleinekathofer U, Suginta W, van den Berg B. Structural basis for chitin acquisition by marine Vibrio species. Nat Commun. 2018 Jan 15;9(1):220. doi: 10.1038/s41467-017-02523-y. PMID:29335469 doi:http://dx.doi.org/10.1038/s41467-017-02523-y

5mds, resolution 2.60Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA