5ik2: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
<StructureSection load='5ik2' size='340' side='right' caption='[[5ik2]], [[Resolution|resolution]] 2.60Å' scene=''> | <StructureSection load='5ik2' size='340' side='right' caption='[[5ik2]], [[Resolution|resolution]] 2.60Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[5ik2]] is a 16 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5IK2 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5IK2 FirstGlance]. <br> | <table><tr><td colspan='2'>[[5ik2]] is a 16 chain structure with sequence from [http://en.wikipedia.org/wiki/Caldalkalibacillus_thermarum_ta2.a1 Caldalkalibacillus thermarum ta2.a1]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5IK2 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5IK2 FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ADP:ADENOSINE-5-DIPHOSPHATE'>ADP</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=PO4:PHOSPHATE+ION'>PO4</scene></td></tr> | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ADP:ADENOSINE-5-DIPHOSPHATE'>ADP</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=PO4:PHOSPHATE+ION'>PO4</scene></td></tr> | ||
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">atpA, CathTA2_2809 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=986075 Caldalkalibacillus thermarum TA2.A1]), atpD, CathTA2_2807 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=986075 Caldalkalibacillus thermarum TA2.A1]), atpG, CathTA2_2808 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=986075 Caldalkalibacillus thermarum TA2.A1]), atpC, CathTA2_2806 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=986075 Caldalkalibacillus thermarum TA2.A1])</td></tr> | |||
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/H(+)-transporting_two-sector_ATPase H(+)-transporting two-sector ATPase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.6.3.14 3.6.3.14] </span></td></tr> | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/H(+)-transporting_two-sector_ATPase H(+)-transporting two-sector ATPase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.6.3.14 3.6.3.14] </span></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5ik2 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5ik2 OCA], [http://pdbe.org/5ik2 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5ik2 RCSB], [http://www.ebi.ac.uk/pdbsum/5ik2 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5ik2 ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5ik2 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5ik2 OCA], [http://pdbe.org/5ik2 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5ik2 RCSB], [http://www.ebi.ac.uk/pdbsum/5ik2 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5ik2 ProSAT]</span></td></tr> | ||
Line 19: | Line 20: | ||
</div> | </div> | ||
<div class="pdbe-citations 5ik2" style="background-color:#fffaf0;"></div> | <div class="pdbe-citations 5ik2" style="background-color:#fffaf0;"></div> | ||
== References == | == References == | ||
<references/> | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: Caldalkalibacillus thermarum ta2 a1]] | |||
[[Category: Cook, G M]] | [[Category: Cook, G M]] | ||
[[Category: Ferguson, S A]] | [[Category: Ferguson, S A]] |
Revision as of 23:36, 24 January 2018
Caldalaklibacillus thermarum F1-ATPase (epsilon mutant)Caldalaklibacillus thermarum F1-ATPase (epsilon mutant)
Structural highlights
Function[F5LA71_9BACI] Produces ATP from ADP in the presence of a proton gradient across the membrane.[HAMAP-Rule:MF_00530][SAAS:SAAS00284553] [F5LA74_9BACI] Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit.[HAMAP-Rule:MF_01346] [F5LA73_9BACI] Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex.[HAMAP-Rule:MF_00815][SAAS:SAAS00011807] [F5LA72_9BACI] Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits.[HAMAP-Rule:MF_01347] Publication Abstract from PubMedThe crystal structure has been determined of the F1-catalytic domain of the F-ATPase from Caldalkalibacillus thermarum, which hydrolyzes adenosine triphosphate (ATP) poorly. It is very similar to those of active mitochondrial and bacterial F1-ATPases. In the F-ATPase from Geobacillus stearothermophilus, conformational changes in the epsilon-subunit are influenced by intracellular ATP concentration and membrane potential. When ATP is plentiful, the epsilon-subunit assumes a "down" state, with an ATP molecule bound to its two C-terminal alpha-helices; when ATP is scarce, the alpha-helices are proposed to inhibit ATP hydrolysis by assuming an "up" state, where the alpha-helices, devoid of ATP, enter the alpha3beta3-catalytic region. However, in the Escherichia coli enzyme, there is no evidence that such ATP binding to the epsilon-subunit is mechanistically important for modulating the enzyme's hydrolytic activity. In the structure of the F1-ATPase from C. thermarum, ATP and a magnesium ion are bound to the alpha-helices in the down state. In a form with a mutated epsilon-subunit unable to bind ATP, the enzyme remains inactive and the epsilon-subunit is down. Therefore, neither the gamma-subunit nor the regulatory ATP bound to the epsilon-subunit is involved in the inhibitory mechanism of this particular enzyme. The structure of the alpha3beta3-catalytic domain is likewise closely similar to those of active F1-ATPases. However, although the betaE-catalytic site is in the usual "open" conformation, it is occupied by the unique combination of an ADP molecule with no magnesium ion and a phosphate ion. These bound hydrolytic products are likely to be the basis of inhibition of ATP hydrolysis. Regulation of the thermoalkaliphilic F1-ATPase from Caldalkalibacillus thermarum.,Ferguson SA, Cook GM, Montgomery MG, Leslie AG, Walker JE Proc Natl Acad Sci U S A. 2016 Sep 27;113(39):10860-5. doi:, 10.1073/pnas.1612035113. Epub 2016 Sep 12. PMID:27621435[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|