2co0: Difference between revisions
No edit summary |
No edit summary |
||
Line 7: | Line 7: | ||
|ACTIVITY= | |ACTIVITY= | ||
|GENE= | |GENE= | ||
|DOMAIN= | |||
|RELATEDENTRY= | |||
|RESOURCES=<span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2co0 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2co0 OCA], [http://www.ebi.ac.uk/pdbsum/2co0 PDBsum], [http://www.rcsb.org/pdb/explore.do?structureId=2co0 RCSB]</span> | |||
}} | }} | ||
Line 14: | Line 17: | ||
==Overview== | ==Overview== | ||
WDR5 is a core component of SET1-family complexes that achieve transcriptional activation via methylation of histone H3 on Nzeta of Lys4 (H3K4). The role of WDR5 in the MLL1 complex has recently been described as specific recognition of dimethyl-K4 in the context of a histone H3 amino terminus; WDR5 is essential for vertebrate development, Hox gene activation and global H3K4 trimethylation. We report the high-resolution X-ray structures of WDR5 in the unliganded form and complexed with histone H3 peptides having unmodified and mono-, di- and trimethylated K4, which together provide the first comprehensive analysis of methylated histone recognition by the ubiquitous WD40-repeat fold. Contrary to predictions, the structures reveal that WDR5 does not read out the methylation state of K4 directly, but instead serves to present the K4 side chain for further methylation by SET1-family complexes. | WDR5 is a core component of SET1-family complexes that achieve transcriptional activation via methylation of histone H3 on Nzeta of Lys4 (H3K4). The role of WDR5 in the MLL1 complex has recently been described as specific recognition of dimethyl-K4 in the context of a histone H3 amino terminus; WDR5 is essential for vertebrate development, Hox gene activation and global H3K4 trimethylation. We report the high-resolution X-ray structures of WDR5 in the unliganded form and complexed with histone H3 peptides having unmodified and mono-, di- and trimethylated K4, which together provide the first comprehensive analysis of methylated histone recognition by the ubiquitous WD40-repeat fold. Contrary to predictions, the structures reveal that WDR5 does not read out the methylation state of K4 directly, but instead serves to present the K4 side chain for further methylation by SET1-family complexes. | ||
==About this Structure== | ==About this Structure== | ||
Line 39: | Line 39: | ||
[[Category: transcription activation]] | [[Category: transcription activation]] | ||
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Mon Mar 31 02:24:13 2008'' |
Revision as of 02:24, 31 March 2008
| |||||||
, resolution 2.25Å | |||||||
---|---|---|---|---|---|---|---|
Resources: | FirstGlance, OCA, PDBsum, RCSB | ||||||
Coordinates: | save as pdb, mmCIF, xml |
WDR5 AND UNMODIFIED HISTONE H3 COMPLEX AT 2.25 ANGSTROM
OverviewOverview
WDR5 is a core component of SET1-family complexes that achieve transcriptional activation via methylation of histone H3 on Nzeta of Lys4 (H3K4). The role of WDR5 in the MLL1 complex has recently been described as specific recognition of dimethyl-K4 in the context of a histone H3 amino terminus; WDR5 is essential for vertebrate development, Hox gene activation and global H3K4 trimethylation. We report the high-resolution X-ray structures of WDR5 in the unliganded form and complexed with histone H3 peptides having unmodified and mono-, di- and trimethylated K4, which together provide the first comprehensive analysis of methylated histone recognition by the ubiquitous WD40-repeat fold. Contrary to predictions, the structures reveal that WDR5 does not read out the methylation state of K4 directly, but instead serves to present the K4 side chain for further methylation by SET1-family complexes.
About this StructureAbout this Structure
2CO0 is a Single protein structure of sequence from Homo sapiens. Full crystallographic information is available from OCA.
ReferenceReference
Histone H3 recognition and presentation by the WDR5 module of the MLL1 complex., Ruthenburg AJ, Wang W, Graybosch DM, Li H, Allis CD, Patel DJ, Verdine GL, Nat Struct Mol Biol. 2006 Aug;13(8):704-12. Epub 2006 Jul 9. PMID:16829959
Page seeded by OCA on Mon Mar 31 02:24:13 2008