5vu8: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 3: Line 3:
<StructureSection load='5vu8' size='340' side='right' caption='[[5vu8]], [[Resolution|resolution]] 3.20&Aring;' scene=''>
<StructureSection load='5vu8' size='340' side='right' caption='[[5vu8]], [[Resolution|resolution]] 3.20&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[5vu8]] is a 3 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5VU8 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5VU8 FirstGlance]. <br>
<table><tr><td colspan='2'>[[5vu8]] is a 3 chain structure with sequence from [http://en.wikipedia.org/wiki/"thermococcus_kodakaraensis"_atomi_et_al._2004 "thermococcus kodakaraensis" atomi et al. 2004]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5VU8 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5VU8 FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=9O7:[(3~{S},4~{R},5~{R})-5-(6-aminopurin-9-yl)-4-oxidanyl-oxolan-3-yl]+[oxidanyl(phosphonooxy)phosphoryl]+hydrogen+phosphate'>9O7</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=9O7:[(3~{S},4~{R},5~{R})-5-(6-aminopurin-9-yl)-4-oxidanyl-oxolan-3-yl]+[oxidanyl(phosphonooxy)phosphoryl]+hydrogen+phosphate'>9O7</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr>
<tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=9O4:'>9O4</scene></td></tr>
<tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=9O4:'>9O4</scene></td></tr>
Line 10: Line 10:
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5vu8 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5vu8 OCA], [http://pdbe.org/5vu8 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5vu8 RCSB], [http://www.ebi.ac.uk/pdbsum/5vu8 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5vu8 ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5vu8 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5vu8 OCA], [http://pdbe.org/5vu8 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5vu8 RCSB], [http://www.ebi.ac.uk/pdbsum/5vu8 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5vu8 ProSAT]</span></td></tr>
</table>
</table>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Darwinian evolution experiments carried out on xeno-nucleic acid (XNA) polymers require engineered polymerases that can faithfully and efficiently copy genetic information back and forth between DNA and XNA. However, current XNA polymerases function with inferior activity relative to their natural counterparts. Here, we report five X-ray crystal structures that illustrate the pathway by which alpha-(L)-threofuranosyl nucleic acid (TNA) triphosphates are selected and extended in a template-dependent manner using a laboratory-evolved polymerase known as Kod-RI. Structural comparison of the apo, binary, open and closed ternary, and translocated product detail an ensemble of interactions and conformational changes required to promote TNA synthesis. Close inspection of the active site in the closed ternary structure reveals a sub-optimal binding geometry that explains the slow rate of catalysis. This key piece of information, which is missing for all naturally occurring archaeal DNA polymerases, provides a framework for engineering new TNA polymerase variants.
Structural basis for TNA synthesis by an engineered TNA polymerase.,Chim N, Shi C, Sau SP, Nikoomanzar A, Chaput JC Nat Commun. 2017 Nov 27;8(1):1810. doi: 10.1038/s41467-017-02014-0. PMID:29180809<ref>PMID:29180809</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 5vu8" style="background-color:#fffaf0;"></div>
== References ==
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Thermococcus kodakaraensis atomi et al. 2004]]
[[Category: DNA-directed DNA polymerase]]
[[Category: DNA-directed DNA polymerase]]
[[Category: Chaput, J C]]
[[Category: Chaput, J C]]

Revision as of 10:33, 13 December 2017

TNA polymerase, closed ternary complexTNA polymerase, closed ternary complex

Structural highlights

5vu8 is a 3 chain structure with sequence from "thermococcus_kodakaraensis"_atomi_et_al._2004 "thermococcus kodakaraensis" atomi et al. 2004. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:,
NonStd Res:
Activity:DNA-directed DNA polymerase, with EC number 2.7.7.7
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Publication Abstract from PubMed

Darwinian evolution experiments carried out on xeno-nucleic acid (XNA) polymers require engineered polymerases that can faithfully and efficiently copy genetic information back and forth between DNA and XNA. However, current XNA polymerases function with inferior activity relative to their natural counterparts. Here, we report five X-ray crystal structures that illustrate the pathway by which alpha-(L)-threofuranosyl nucleic acid (TNA) triphosphates are selected and extended in a template-dependent manner using a laboratory-evolved polymerase known as Kod-RI. Structural comparison of the apo, binary, open and closed ternary, and translocated product detail an ensemble of interactions and conformational changes required to promote TNA synthesis. Close inspection of the active site in the closed ternary structure reveals a sub-optimal binding geometry that explains the slow rate of catalysis. This key piece of information, which is missing for all naturally occurring archaeal DNA polymerases, provides a framework for engineering new TNA polymerase variants.

Structural basis for TNA synthesis by an engineered TNA polymerase.,Chim N, Shi C, Sau SP, Nikoomanzar A, Chaput JC Nat Commun. 2017 Nov 27;8(1):1810. doi: 10.1038/s41467-017-02014-0. PMID:29180809[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Chim N, Shi C, Sau SP, Nikoomanzar A, Chaput JC. Structural basis for TNA synthesis by an engineered TNA polymerase. Nat Commun. 2017 Nov 27;8(1):1810. doi: 10.1038/s41467-017-02014-0. PMID:29180809 doi:http://dx.doi.org/10.1038/s41467-017-02014-0

5vu8, resolution 3.20Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA