2c8q: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 7: Line 7:
|ACTIVITY=  
|ACTIVITY=  
|GENE=  
|GENE=  
|DOMAIN=
|RELATEDENTRY=
|RESOURCES=<span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2c8q FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2c8q OCA], [http://www.ebi.ac.uk/pdbsum/2c8q PDBsum], [http://www.rcsb.org/pdb/explore.do?structureId=2c8q RCSB]</span>
}}
}}


Line 14: Line 17:
==Overview==
==Overview==
Structural proteomics has promoted the rapid development of automated protein structure determination using X-ray crystallography. Robotics are now routinely used along the pipeline from genes to protein structures. However, a bottleneck still remains. At synchrotron beamlines, the success rate of automated sample alignment along the X-ray beam is limited by difficulties in visualization of protein crystals, especially when they are small and embedded in mother liquor. Despite considerable improvement in optical microscopes, the use of visible light transmitted or reflected by the sample may result in poor or misleading contrast. Here, the endogenous fluorescence from aromatic amino acids has been used to identify even tiny or weakly fluorescent crystals with a high success rate. The use of a compact laser at 266 nm in combination with non-fluorescent sample holders provides an efficient solution to collect high-contrast fluorescence images in a few milliseconds and using standard camera optics. The best image quality was obtained with direct illumination through a viewing system coaxial with the UV beam. Crystallographic data suggest that the employed UV exposures do not generate detectable structural damage.
Structural proteomics has promoted the rapid development of automated protein structure determination using X-ray crystallography. Robotics are now routinely used along the pipeline from genes to protein structures. However, a bottleneck still remains. At synchrotron beamlines, the success rate of automated sample alignment along the X-ray beam is limited by difficulties in visualization of protein crystals, especially when they are small and embedded in mother liquor. Despite considerable improvement in optical microscopes, the use of visible light transmitted or reflected by the sample may result in poor or misleading contrast. Here, the endogenous fluorescence from aromatic amino acids has been used to identify even tiny or weakly fluorescent crystals with a high success rate. The use of a compact laser at 266 nm in combination with non-fluorescent sample holders provides an efficient solution to collect high-contrast fluorescence images in a few milliseconds and using standard camera optics. The best image quality was obtained with direct illumination through a viewing system coaxial with the UV beam. Crystallographic data suggest that the employed UV exposures do not generate detectable structural damage.
==Disease==
Known diseases associated with this structure: Diabetes mellitus, rare form OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=176730 176730]], Hyperproinsulinemia, familial OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=176730 176730]], MODY, one form OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=176730 176730]]


==About this Structure==
==About this Structure==
Line 41: Line 41:
[[Category: uv]]
[[Category: uv]]


''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Thu Mar 20 16:12:18 2008''
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Mon Mar 31 02:18:00 2008''

Revision as of 02:18, 31 March 2008

File:2c8q.gif


PDB ID 2c8q

Drag the structure with the mouse to rotate
, resolution 1.95Å
Resources: FirstGlance, OCA, PDBsum, RCSB
Coordinates: save as pdb, mmCIF, xml



INSULINE(1SEC) AND UV LASER EXCITED FLUORESCENCE


OverviewOverview

Structural proteomics has promoted the rapid development of automated protein structure determination using X-ray crystallography. Robotics are now routinely used along the pipeline from genes to protein structures. However, a bottleneck still remains. At synchrotron beamlines, the success rate of automated sample alignment along the X-ray beam is limited by difficulties in visualization of protein crystals, especially when they are small and embedded in mother liquor. Despite considerable improvement in optical microscopes, the use of visible light transmitted or reflected by the sample may result in poor or misleading contrast. Here, the endogenous fluorescence from aromatic amino acids has been used to identify even tiny or weakly fluorescent crystals with a high success rate. The use of a compact laser at 266 nm in combination with non-fluorescent sample holders provides an efficient solution to collect high-contrast fluorescence images in a few milliseconds and using standard camera optics. The best image quality was obtained with direct illumination through a viewing system coaxial with the UV beam. Crystallographic data suggest that the employed UV exposures do not generate detectable structural damage.

About this StructureAbout this Structure

2C8Q is a Protein complex structure of sequences from Homo sapiens. Full crystallographic information is available from OCA.

ReferenceReference

UV laser-excited fluorescence as a tool for the visualization of protein crystals mounted in loops., Vernede X, Lavault B, Ohana J, Nurizzo D, Joly J, Jacquamet L, Felisaz F, Cipriani F, Bourgeois D, Acta Crystallogr D Biol Crystallogr. 2006 Mar;62(Pt 3):253-61. Epub 2006, Feb 22. PMID:16510972

Page seeded by OCA on Mon Mar 31 02:18:00 2008

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA