2c8q: Difference between revisions
No edit summary |
No edit summary |
||
Line 7: | Line 7: | ||
|ACTIVITY= | |ACTIVITY= | ||
|GENE= | |GENE= | ||
|DOMAIN= | |||
|RELATEDENTRY= | |||
|RESOURCES=<span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2c8q FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2c8q OCA], [http://www.ebi.ac.uk/pdbsum/2c8q PDBsum], [http://www.rcsb.org/pdb/explore.do?structureId=2c8q RCSB]</span> | |||
}} | }} | ||
Line 14: | Line 17: | ||
==Overview== | ==Overview== | ||
Structural proteomics has promoted the rapid development of automated protein structure determination using X-ray crystallography. Robotics are now routinely used along the pipeline from genes to protein structures. However, a bottleneck still remains. At synchrotron beamlines, the success rate of automated sample alignment along the X-ray beam is limited by difficulties in visualization of protein crystals, especially when they are small and embedded in mother liquor. Despite considerable improvement in optical microscopes, the use of visible light transmitted or reflected by the sample may result in poor or misleading contrast. Here, the endogenous fluorescence from aromatic amino acids has been used to identify even tiny or weakly fluorescent crystals with a high success rate. The use of a compact laser at 266 nm in combination with non-fluorescent sample holders provides an efficient solution to collect high-contrast fluorescence images in a few milliseconds and using standard camera optics. The best image quality was obtained with direct illumination through a viewing system coaxial with the UV beam. Crystallographic data suggest that the employed UV exposures do not generate detectable structural damage. | Structural proteomics has promoted the rapid development of automated protein structure determination using X-ray crystallography. Robotics are now routinely used along the pipeline from genes to protein structures. However, a bottleneck still remains. At synchrotron beamlines, the success rate of automated sample alignment along the X-ray beam is limited by difficulties in visualization of protein crystals, especially when they are small and embedded in mother liquor. Despite considerable improvement in optical microscopes, the use of visible light transmitted or reflected by the sample may result in poor or misleading contrast. Here, the endogenous fluorescence from aromatic amino acids has been used to identify even tiny or weakly fluorescent crystals with a high success rate. The use of a compact laser at 266 nm in combination with non-fluorescent sample holders provides an efficient solution to collect high-contrast fluorescence images in a few milliseconds and using standard camera optics. The best image quality was obtained with direct illumination through a viewing system coaxial with the UV beam. Crystallographic data suggest that the employed UV exposures do not generate detectable structural damage. | ||
==About this Structure== | ==About this Structure== | ||
Line 41: | Line 41: | ||
[[Category: uv]] | [[Category: uv]] | ||
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Mon Mar 31 02:18:00 2008'' |
Revision as of 02:18, 31 March 2008
| |||||||
, resolution 1.95Å | |||||||
---|---|---|---|---|---|---|---|
Resources: | FirstGlance, OCA, PDBsum, RCSB | ||||||
Coordinates: | save as pdb, mmCIF, xml |
INSULINE(1SEC) AND UV LASER EXCITED FLUORESCENCE
OverviewOverview
Structural proteomics has promoted the rapid development of automated protein structure determination using X-ray crystallography. Robotics are now routinely used along the pipeline from genes to protein structures. However, a bottleneck still remains. At synchrotron beamlines, the success rate of automated sample alignment along the X-ray beam is limited by difficulties in visualization of protein crystals, especially when they are small and embedded in mother liquor. Despite considerable improvement in optical microscopes, the use of visible light transmitted or reflected by the sample may result in poor or misleading contrast. Here, the endogenous fluorescence from aromatic amino acids has been used to identify even tiny or weakly fluorescent crystals with a high success rate. The use of a compact laser at 266 nm in combination with non-fluorescent sample holders provides an efficient solution to collect high-contrast fluorescence images in a few milliseconds and using standard camera optics. The best image quality was obtained with direct illumination through a viewing system coaxial with the UV beam. Crystallographic data suggest that the employed UV exposures do not generate detectable structural damage.
About this StructureAbout this Structure
2C8Q is a Protein complex structure of sequences from Homo sapiens. Full crystallographic information is available from OCA.
ReferenceReference
UV laser-excited fluorescence as a tool for the visualization of protein crystals mounted in loops., Vernede X, Lavault B, Ohana J, Nurizzo D, Joly J, Jacquamet L, Felisaz F, Cipriani F, Bourgeois D, Acta Crystallogr D Biol Crystallogr. 2006 Mar;62(Pt 3):253-61. Epub 2006, Feb 22. PMID:16510972
Page seeded by OCA on Mon Mar 31 02:18:00 2008