5xti: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 10: Line 10:
{{Large structure}}
{{Large structure}}
== Disease ==
== Disease ==
[[http://www.uniprot.org/uniprot/QCR7_HUMAN QCR7_HUMAN]] Isolated CoQ-cytochrome C reductase deficiency. The disease is caused by mutations affecting the gene represented in this entry. [[http://www.uniprot.org/uniprot/NDUAD_HUMAN NDUAD_HUMAN]] Papillary or follicular thyroid carcinoma. Disease susceptibility is associated with variations affecting the gene represented in this entry.  Defects in NDUFA13 are a cause of a mitochondrial complex I deficiency characterized by early onset hypotonia, dyskinesia and sensorial deficiencies, as well as a severe optic neuropathy.<ref>PMID:25901006</ref>  [[http://www.uniprot.org/uniprot/NDUS6_HUMAN NDUS6_HUMAN]] Isolated NADH-CoQ reductase deficiency. The disease is caused by mutations affecting the gene represented in this entry. [[http://www.uniprot.org/uniprot/NDUAA_HUMAN NDUAA_HUMAN]] Leigh syndrome with leukodystrophy. The disease is caused by mutations affecting the gene represented in this entry. [[http://www.uniprot.org/uniprot/NDUAB_HUMAN NDUAB_HUMAN]] Isolated NADH-CoQ reductase deficiency. The disease is caused by mutations affecting the gene represented in this entry. [[http://www.uniprot.org/uniprot/NDUS4_HUMAN NDUS4_HUMAN]] Isolated NADH-CoQ reductase deficiency;Leigh syndrome with leukodystrophy. The disease is caused by mutations affecting the gene represented in this entry.  The disease is caused by mutations affecting the gene represented in this entry. [[http://www.uniprot.org/uniprot/CY1_HUMAN CY1_HUMAN]] Isolated CoQ-cytochrome C reductase deficiency. The disease is caused by mutations affecting the gene represented in this entry. [[http://www.uniprot.org/uniprot/NDUB9_HUMAN NDUB9_HUMAN]] Isolated NADH-CoQ reductase deficiency.  [[http://www.uniprot.org/uniprot/QCR8_HUMAN QCR8_HUMAN]] Isolated CoQ-cytochrome C reductase deficiency. The disease is caused by mutations affecting the gene represented in this entry. [[http://www.uniprot.org/uniprot/NDUS1_HUMAN NDUS1_HUMAN]] Isolated NADH-CoQ reductase deficiency;Leigh syndrome with leukodystrophy. The disease is caused by mutations affecting the gene represented in this entry. [[http://www.uniprot.org/uniprot/NDUS3_HUMAN NDUS3_HUMAN]] Isolated NADH-CoQ reductase deficiency;Leigh syndrome with leukodystrophy.  [[http://www.uniprot.org/uniprot/CYB_HUMAN CYB_HUMAN]] Histiocytoid cardiomyopathy;Leber hereditary optic neuropathy;Isolated CoQ-cytochrome C reductase deficiency. Defects in MT-CYB are a rare cause of mitochondrial dysfunction underlying different myopathies. They include mitochondrial encephalomyopathy, hypertrophic cardiomyopathy (HCM), and sporadic mitochondrial myopathy (MM). In mitochondrial myopathy, exercise intolerance is the predominant symptom. Additional features include lactic acidosis, muscle weakness and/or myoglobinuria. Defects in MTCYB are also found in cases of exercise intolerance accompanied by deafness, mental retardation, retinitis pigmentosa, cataract, growth retardation, epilepsy (multisystem disorder).<ref>PMID:11047755</ref> <ref>PMID:11601507</ref>  The disease is caused by mutations affecting the gene represented in this entry.  The disease is caused by mutations affecting distinct genetic loci, including the gene represented in this entry. [[http://www.uniprot.org/uniprot/QCR2_HUMAN QCR2_HUMAN]] Isolated CoQ-cytochrome C reductase deficiency. The disease is caused by mutations affecting the gene represented in this entry. [[http://www.uniprot.org/uniprot/NDUA1_HUMAN NDUA1_HUMAN]] Isolated NADH-CoQ reductase deficiency. The disease is caused by mutations affecting the gene represented in this entry. [[http://www.uniprot.org/uniprot/NDUS8_HUMAN NDUS8_HUMAN]] Isolated NADH-CoQ reductase deficiency;Leigh syndrome with leukodystrophy. The disease is caused by mutations affecting the gene represented in this entry. [[http://www.uniprot.org/uniprot/NDUV1_HUMAN NDUV1_HUMAN]] Isolated NADH-CoQ reductase deficiency;Leigh syndrome with leukodystrophy. The disease is caused by mutations affecting the gene represented in this entry.  The disease is caused by mutations affecting the gene represented in this entry. [[http://www.uniprot.org/uniprot/NDUBB_HUMAN NDUBB_HUMAN]] The disease is caused by mutations affecting the gene represented in this entry.  The disease is caused by mutations affecting the gene represented in this entry.  The disease may be caused by mutations affecting the gene represented in this entry. [[http://www.uniprot.org/uniprot/NDUV2_HUMAN NDUV2_HUMAN]] Isolated NADH-CoQ reductase deficiency.  [[http://www.uniprot.org/uniprot/NDUB3_HUMAN NDUB3_HUMAN]] Isolated NADH-CoQ reductase deficiency. The disease is caused by mutations affecting the gene represented in this entry. [[http://www.uniprot.org/uniprot/NDUAC_HUMAN NDUAC_HUMAN]] The disease is caused by mutations affecting the gene represented in this entry. [[http://www.uniprot.org/uniprot/NDUS7_HUMAN NDUS7_HUMAN]] Isolated NADH-CoQ reductase deficiency;Leigh syndrome with leukodystrophy. The disease is caused by mutations affecting the gene represented in this entry.  The disease is caused by mutations affecting the gene represented in this entry. [[http://www.uniprot.org/uniprot/NDUA9_HUMAN NDUA9_HUMAN]] Isolated NADH-CoQ reductase deficiency. The disease is caused by mutations affecting the gene represented in this entry.  
[[http://www.uniprot.org/uniprot/QCR7_HUMAN QCR7_HUMAN]] Isolated CoQ-cytochrome C reductase deficiency. The disease is caused by mutations affecting the gene represented in this entry. [[http://www.uniprot.org/uniprot/NDUAD_HUMAN NDUAD_HUMAN]] Papillary or follicular thyroid carcinoma. Disease susceptibility is associated with variations affecting the gene represented in this entry.  Defects in NDUFA13 are a cause of a mitochondrial complex I deficiency characterized by early onset hypotonia, dyskinesia and sensorial deficiencies, as well as a severe optic neuropathy.<ref>PMID:25901006</ref>  [[http://www.uniprot.org/uniprot/NDUS6_HUMAN NDUS6_HUMAN]] Isolated NADH-CoQ reductase deficiency. The disease is caused by mutations affecting the gene represented in this entry. [[http://www.uniprot.org/uniprot/NDUAA_HUMAN NDUAA_HUMAN]] Leigh syndrome with leukodystrophy. The disease is caused by mutations affecting the gene represented in this entry. [[http://www.uniprot.org/uniprot/NDUAB_HUMAN NDUAB_HUMAN]] Isolated NADH-CoQ reductase deficiency. The disease is caused by mutations affecting the gene represented in this entry. [[http://www.uniprot.org/uniprot/NDUS4_HUMAN NDUS4_HUMAN]] Isolated NADH-CoQ reductase deficiency;Leigh syndrome with leukodystrophy. The disease is caused by mutations affecting the gene represented in this entry.  The disease is caused by mutations affecting the gene represented in this entry. [[http://www.uniprot.org/uniprot/CY1_HUMAN CY1_HUMAN]] Isolated CoQ-cytochrome C reductase deficiency. The disease is caused by mutations affecting the gene represented in this entry. [[http://www.uniprot.org/uniprot/NDUB9_HUMAN NDUB9_HUMAN]] Isolated NADH-CoQ reductase deficiency.  [[http://www.uniprot.org/uniprot/QCR8_HUMAN QCR8_HUMAN]] Isolated CoQ-cytochrome C reductase deficiency. The disease is caused by mutations affecting the gene represented in this entry. [[http://www.uniprot.org/uniprot/NDUS1_HUMAN NDUS1_HUMAN]] Isolated NADH-CoQ reductase deficiency;Leigh syndrome with leukodystrophy. The disease is caused by mutations affecting the gene represented in this entry. [[http://www.uniprot.org/uniprot/NDUS3_HUMAN NDUS3_HUMAN]] Isolated NADH-CoQ reductase deficiency;Leigh syndrome with leukodystrophy.  [[http://www.uniprot.org/uniprot/CYB_HUMAN CYB_HUMAN]] Histiocytoid cardiomyopathy;Leber hereditary optic neuropathy;Isolated CoQ-cytochrome C reductase deficiency. Defects in MT-CYB are a rare cause of mitochondrial dysfunction underlying different myopathies. They include mitochondrial encephalomyopathy, hypertrophic cardiomyopathy (HCM), and sporadic mitochondrial myopathy (MM). In mitochondrial myopathy, exercise intolerance is the predominant symptom. Additional features include lactic acidosis, muscle weakness and/or myoglobinuria. Defects in MTCYB are also found in cases of exercise intolerance accompanied by deafness, mental retardation, retinitis pigmentosa, cataract, growth retardation, epilepsy (multisystem disorder).<ref>PMID:11047755</ref> <ref>PMID:11601507</ref>  The disease is caused by mutations affecting the gene represented in this entry.  The disease is caused by mutations affecting distinct genetic loci, including the gene represented in this entry. [[http://www.uniprot.org/uniprot/QCR2_HUMAN QCR2_HUMAN]] Isolated CoQ-cytochrome C reductase deficiency. The disease is caused by mutations affecting the gene represented in this entry. [[http://www.uniprot.org/uniprot/NDUS8_HUMAN NDUS8_HUMAN]] Isolated NADH-CoQ reductase deficiency;Leigh syndrome with leukodystrophy. The disease is caused by mutations affecting the gene represented in this entry. [[http://www.uniprot.org/uniprot/NDUA1_HUMAN NDUA1_HUMAN]] Isolated NADH-CoQ reductase deficiency. The disease is caused by mutations affecting the gene represented in this entry. [[http://www.uniprot.org/uniprot/NDUV1_HUMAN NDUV1_HUMAN]] Isolated NADH-CoQ reductase deficiency;Leigh syndrome with leukodystrophy. The disease is caused by mutations affecting the gene represented in this entry.  The disease is caused by mutations affecting the gene represented in this entry. [[http://www.uniprot.org/uniprot/NDUBB_HUMAN NDUBB_HUMAN]] The disease is caused by mutations affecting the gene represented in this entry.  The disease is caused by mutations affecting the gene represented in this entry.  The disease may be caused by mutations affecting the gene represented in this entry. [[http://www.uniprot.org/uniprot/NDUV2_HUMAN NDUV2_HUMAN]] Isolated NADH-CoQ reductase deficiency.  [[http://www.uniprot.org/uniprot/NDUB3_HUMAN NDUB3_HUMAN]] Isolated NADH-CoQ reductase deficiency. The disease is caused by mutations affecting the gene represented in this entry. [[http://www.uniprot.org/uniprot/NDUAC_HUMAN NDUAC_HUMAN]] The disease is caused by mutations affecting the gene represented in this entry. [[http://www.uniprot.org/uniprot/NDUS7_HUMAN NDUS7_HUMAN]] Isolated NADH-CoQ reductase deficiency;Leigh syndrome with leukodystrophy. The disease is caused by mutations affecting the gene represented in this entry.  The disease is caused by mutations affecting the gene represented in this entry. [[http://www.uniprot.org/uniprot/NDUA9_HUMAN NDUA9_HUMAN]] Isolated NADH-CoQ reductase deficiency. The disease is caused by mutations affecting the gene represented in this entry.  
== Function ==
== Function ==
[[http://www.uniprot.org/uniprot/B9EE38_HUMAN B9EE38_HUMAN]] Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.[SAAS:SAAS00136983] [[http://www.uniprot.org/uniprot/Q4GRX1_HUMAN Q4GRX1_HUMAN]] Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.[SAAS:SAAS00093760] [[http://www.uniprot.org/uniprot/QCR7_HUMAN QCR7_HUMAN]] This is a component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is part of the mitochondrial respiratory chain. This component is involved in redox-linked proton pumping. [[http://www.uniprot.org/uniprot/NDUAD_HUMAN NDUAD_HUMAN]] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis (PubMed:27626371). Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (PubMed:27626371). Involved in the interferon/all-trans-retinoic acid (IFN/RA) induced cell death. This apoptotic activity is inhibited by interaction with viral IRF1. Prevents the transactivation of STAT3 target genes. May play a role in CARD15-mediated innate mucosal responses and serve to regulate intestinal epithelial cell responses to microbes (PubMed:15753091).<ref>PMID:12628925</ref> <ref>PMID:12867595</ref> <ref>PMID:15753091</ref> <ref>PMID:27626371</ref>  [[http://www.uniprot.org/uniprot/NDUA5_HUMAN NDUA5_HUMAN]] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.<ref>PMID:27626371</ref>  [[http://www.uniprot.org/uniprot/NDUB8_HUMAN NDUB8_HUMAN]] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.<ref>PMID:27626371</ref>  [[http://www.uniprot.org/uniprot/NDUS6_HUMAN NDUS6_HUMAN]] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.<ref>PMID:27626371</ref>  [[http://www.uniprot.org/uniprot/NDUAA_HUMAN NDUAA_HUMAN]] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.<ref>PMID:27626371</ref>  [[http://www.uniprot.org/uniprot/COX7B_BOVIN COX7B_BOVIN]] This protein is one of the nuclear-coded polypeptide chains of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport. [[http://www.uniprot.org/uniprot/NDUBA_HUMAN NDUBA_HUMAN]] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.<ref>PMID:27626371</ref>  [[http://www.uniprot.org/uniprot/COX8B_BOVIN COX8B_BOVIN]] This protein is one of the nuclear-coded polypeptide chains of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport. [[http://www.uniprot.org/uniprot/QCR9_HUMAN QCR9_HUMAN]] This is a component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is part of the mitochondrial respiratory chain. This subunit interacts with cytochrome c1 (By similarity). [[http://www.uniprot.org/uniprot/NDUAB_HUMAN NDUAB_HUMAN]] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.<ref>PMID:27626371</ref>  [[http://www.uniprot.org/uniprot/NDUV3_HUMAN NDUV3_HUMAN]] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. May be the terminally assembled subunit of Complex I.<ref>PMID:27626371</ref>  [[http://www.uniprot.org/uniprot/NDUS5_HUMAN NDUS5_HUMAN]] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.<ref>PMID:27626371</ref>  [[http://www.uniprot.org/uniprot/X5BVZ3_HUMAN X5BVZ3_HUMAN]] Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.[SAAS:SAAS00061107] [[http://www.uniprot.org/uniprot/NDUS4_HUMAN NDUS4_HUMAN]] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.<ref>PMID:12611891</ref> <ref>PMID:9463323</ref>  [[http://www.uniprot.org/uniprot/COX41_BOVIN COX41_BOVIN]] This protein is one of the nuclear-coded polypeptide chains of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport. [[http://www.uniprot.org/uniprot/CY1_HUMAN CY1_HUMAN]] This is the heme-containing component of the cytochrome b-c1 complex, which accepts electrons from Rieske protein and transfers electrons to cytochrome c in the mitochondrial respiratory chain. [[http://www.uniprot.org/uniprot/NDUC1_HUMAN NDUC1_HUMAN]] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.<ref>PMID:27626371</ref>  [[http://www.uniprot.org/uniprot/COX5B_BOVIN COX5B_BOVIN]] This protein is one of the nuclear-coded polypeptide chains of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport. [[http://www.uniprot.org/uniprot/NDUB9_HUMAN NDUB9_HUMAN]] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed to be not involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.<ref>PMID:27626371</ref>  [[http://www.uniprot.org/uniprot/QCR10_HUMAN QCR10_HUMAN]] This is a component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is part of the mitochondrial respiratory chain.  This protein may be closely linked to the iron-sulfur protein in the complex and function as an iron-sulfur protein binding factor. [[http://www.uniprot.org/uniprot/QCR8_HUMAN QCR8_HUMAN]] This is a component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is part of the mitochondrial respiratory chain. This subunit, together with cytochrome b, binds to ubiquinone. [[http://www.uniprot.org/uniprot/NDUS1_HUMAN NDUS1_HUMAN]] Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). This is the largest subunit of complex I and it is a component of the iron-sulfur (IP) fragment of the enzyme. It may form part of the active site crevice where NADH is oxidized. [[http://www.uniprot.org/uniprot/NDUS3_HUMAN NDUS3_HUMAN]] Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). [[http://www.uniprot.org/uniprot/CX6B1_BOVIN CX6B1_BOVIN]] Connects the two COX monomers into the physiological dimeric form. [[http://www.uniprot.org/uniprot/UCRI_HUMAN UCRI_HUMAN]] Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis.  The transit peptide of the Rieske protein seems to form part of the bc1 complex and is considered to be the subunit 11/IX of that complex. [[http://www.uniprot.org/uniprot/COX7C_BOVIN COX7C_BOVIN]] This protein is one of the nuclear-coded polypeptide chains of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport. [[http://www.uniprot.org/uniprot/CYB_HUMAN CYB_HUMAN]] Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex) that is part of the mitochondrial respiratory chain. The b-c1 complex mediates electron transfer from ubiquinol to cytochrome c. Contributes to the generation of a proton gradient across the mitochondrial membrane that is then used for ATP synthesis.[UniProtKB:P00157] [[http://www.uniprot.org/uniprot/COX1_BOVIN COX1_BOVIN]] Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. [[http://www.uniprot.org/uniprot/NDUA3_HUMAN NDUA3_HUMAN]] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.<ref>PMID:27626371</ref>  [[http://www.uniprot.org/uniprot/QCR6_HUMAN QCR6_HUMAN]] This is a component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is part of the mitochondrial respiratory chain. This protein may mediate formation of the complex between cytochromes c and c1. [[http://www.uniprot.org/uniprot/CX7A1_BOVIN CX7A1_BOVIN]] This protein is one of the nuclear-coded polypeptide chains of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport. [[http://www.uniprot.org/uniprot/QCR2_HUMAN QCR2_HUMAN]] This is a component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is part of the mitochondrial respiratory chain. The core protein 2 is required for the assembly of the complex. [[http://www.uniprot.org/uniprot/QCR1_HUMAN QCR1_HUMAN]] This is a component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is part of the mitochondrial respiratory chain. This protein may mediate formation of the complex between cytochromes c and c1. [[http://www.uniprot.org/uniprot/NDUA1_HUMAN NDUA1_HUMAN]] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.<ref>PMID:27626371</ref>  [[http://www.uniprot.org/uniprot/NDUS8_HUMAN NDUS8_HUMAN]] Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). May donate electrons to ubiquinone. [[http://www.uniprot.org/uniprot/NDUV1_HUMAN NDUV1_HUMAN]] Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). [[http://www.uniprot.org/uniprot/NDUC2_HUMAN NDUC2_HUMAN]] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.<ref>PMID:27626371</ref>  [[http://www.uniprot.org/uniprot/NDUB6_HUMAN NDUB6_HUMAN]] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.<ref>PMID:27626371</ref>  [[http://www.uniprot.org/uniprot/NDUBB_HUMAN NDUBB_HUMAN]] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.<ref>PMID:27626371</ref>  [[http://www.uniprot.org/uniprot/NDUV2_HUMAN NDUV2_HUMAN]] Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). [[http://www.uniprot.org/uniprot/COX5A_BOVIN COX5A_BOVIN]] This is the heme A-containing chain of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport. [[http://www.uniprot.org/uniprot/NDUB5_HUMAN NDUB5_HUMAN]] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.<ref>PMID:27626371</ref>  [[http://www.uniprot.org/uniprot/COX6C_BOVIN COX6C_BOVIN]] This protein is one of the nuclear-coded polypeptide chains of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport. [[http://www.uniprot.org/uniprot/NDUB2_HUMAN NDUB2_HUMAN]] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.<ref>PMID:27626371</ref>  [[http://www.uniprot.org/uniprot/COX2_BOVIN COX2_BOVIN]] Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. Subunit 2 transfers the electrons from cytochrome c via its binuclear copper A center to the bimetallic center of the catalytic subunit 1. [[http://www.uniprot.org/uniprot/NDUB3_HUMAN NDUB3_HUMAN]] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.<ref>PMID:27626371</ref>  [[http://www.uniprot.org/uniprot/NDUAC_HUMAN NDUAC_HUMAN]] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.<ref>PMID:27626371</ref>  [[http://www.uniprot.org/uniprot/ACPM_HUMAN ACPM_HUMAN]] Carrier of the growing fatty acid chain in fatty acid biosynthesis in mitochondria. Accessory and non-catalytic subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), which functions in the transfer of electrons from NADH to the respiratory chain (By similarity). [[http://www.uniprot.org/uniprot/NDUS7_HUMAN NDUS7_HUMAN]] Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.<ref>PMID:12611891</ref>  [[http://www.uniprot.org/uniprot/NDUA9_HUMAN NDUA9_HUMAN]] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.<ref>PMID:22114105</ref> <ref>PMID:27626371</ref>  [[http://www.uniprot.org/uniprot/CX6A2_BOVIN CX6A2_BOVIN]] This protein is one of the nuclear-coded polypeptide chains of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport. [[http://www.uniprot.org/uniprot/COX3_BOVIN COX3_BOVIN]] Subunits I, II and III form the functional core of the enzyme complex. [[http://www.uniprot.org/uniprot/NDUA7_HUMAN NDUA7_HUMAN]] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.<ref>PMID:27626371</ref>  [[http://www.uniprot.org/uniprot/NDUB4_HUMAN NDUB4_HUMAN]] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.<ref>PMID:27626371</ref>  [[http://www.uniprot.org/uniprot/NDUA6_HUMAN NDUA6_HUMAN]] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed to be not involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.<ref>PMID:27626371</ref>  [[http://www.uniprot.org/uniprot/V9JN72_HUMAN V9JN72_HUMAN]] Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.[RuleBase:RU004419] [[http://www.uniprot.org/uniprot/NDUB1_HUMAN NDUB1_HUMAN]] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.<ref>PMID:27626371</ref>  [[http://www.uniprot.org/uniprot/NDUB7_HUMAN NDUB7_HUMAN]] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.<ref>PMID:27626371</ref>  [[http://www.uniprot.org/uniprot/NDUA2_HUMAN NDUA2_HUMAN]] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.  
[[http://www.uniprot.org/uniprot/B9EE38_HUMAN B9EE38_HUMAN]] Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.[SAAS:SAAS00136983] [[http://www.uniprot.org/uniprot/Q4GRX1_HUMAN Q4GRX1_HUMAN]] Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.[SAAS:SAAS00093760] [[http://www.uniprot.org/uniprot/QCR7_HUMAN QCR7_HUMAN]] This is a component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is part of the mitochondrial respiratory chain. This component is involved in redox-linked proton pumping. [[http://www.uniprot.org/uniprot/NDUAD_HUMAN NDUAD_HUMAN]] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis (PubMed:27626371). Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (PubMed:27626371). Involved in the interferon/all-trans-retinoic acid (IFN/RA) induced cell death. This apoptotic activity is inhibited by interaction with viral IRF1. Prevents the transactivation of STAT3 target genes. May play a role in CARD15-mediated innate mucosal responses and serve to regulate intestinal epithelial cell responses to microbes (PubMed:15753091).<ref>PMID:12628925</ref> <ref>PMID:12867595</ref> <ref>PMID:15753091</ref> <ref>PMID:27626371</ref>  [[http://www.uniprot.org/uniprot/NDUA5_HUMAN NDUA5_HUMAN]] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.<ref>PMID:27626371</ref>  [[http://www.uniprot.org/uniprot/NDUB8_HUMAN NDUB8_HUMAN]] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.<ref>PMID:27626371</ref>  [[http://www.uniprot.org/uniprot/NDUS6_HUMAN NDUS6_HUMAN]] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.<ref>PMID:27626371</ref>  [[http://www.uniprot.org/uniprot/NDUAA_HUMAN NDUAA_HUMAN]] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.<ref>PMID:27626371</ref>  [[http://www.uniprot.org/uniprot/COX7B_BOVIN COX7B_BOVIN]] This protein is one of the nuclear-coded polypeptide chains of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport. [[http://www.uniprot.org/uniprot/NDUBA_HUMAN NDUBA_HUMAN]] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.<ref>PMID:27626371</ref>  [[http://www.uniprot.org/uniprot/COX8B_BOVIN COX8B_BOVIN]] This protein is one of the nuclear-coded polypeptide chains of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport. [[http://www.uniprot.org/uniprot/QCR9_HUMAN QCR9_HUMAN]] This is a component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is part of the mitochondrial respiratory chain. This subunit interacts with cytochrome c1 (By similarity). [[http://www.uniprot.org/uniprot/NDUAB_HUMAN NDUAB_HUMAN]] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.<ref>PMID:27626371</ref>  [[http://www.uniprot.org/uniprot/NDUV3_HUMAN NDUV3_HUMAN]] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. May be the terminally assembled subunit of Complex I.<ref>PMID:27626371</ref>  [[http://www.uniprot.org/uniprot/NDUS5_HUMAN NDUS5_HUMAN]] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.<ref>PMID:27626371</ref>  [[http://www.uniprot.org/uniprot/X5BVZ3_HUMAN X5BVZ3_HUMAN]] Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.[SAAS:SAAS00061107] [[http://www.uniprot.org/uniprot/NDUS4_HUMAN NDUS4_HUMAN]] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.<ref>PMID:12611891</ref> <ref>PMID:9463323</ref>  [[http://www.uniprot.org/uniprot/COX41_BOVIN COX41_BOVIN]] This protein is one of the nuclear-coded polypeptide chains of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport. [[http://www.uniprot.org/uniprot/CY1_HUMAN CY1_HUMAN]] This is the heme-containing component of the cytochrome b-c1 complex, which accepts electrons from Rieske protein and transfers electrons to cytochrome c in the mitochondrial respiratory chain. [[http://www.uniprot.org/uniprot/NDUC1_HUMAN NDUC1_HUMAN]] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.<ref>PMID:27626371</ref>  [[http://www.uniprot.org/uniprot/COX5B_BOVIN COX5B_BOVIN]] This protein is one of the nuclear-coded polypeptide chains of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport. [[http://www.uniprot.org/uniprot/NDUB9_HUMAN NDUB9_HUMAN]] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed to be not involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.<ref>PMID:27626371</ref>  [[http://www.uniprot.org/uniprot/QCR10_HUMAN QCR10_HUMAN]] This is a component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is part of the mitochondrial respiratory chain.  This protein may be closely linked to the iron-sulfur protein in the complex and function as an iron-sulfur protein binding factor. [[http://www.uniprot.org/uniprot/QCR8_HUMAN QCR8_HUMAN]] This is a component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is part of the mitochondrial respiratory chain. This subunit, together with cytochrome b, binds to ubiquinone. [[http://www.uniprot.org/uniprot/NDUS1_HUMAN NDUS1_HUMAN]] Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). This is the largest subunit of complex I and it is a component of the iron-sulfur (IP) fragment of the enzyme. It may form part of the active site crevice where NADH is oxidized. [[http://www.uniprot.org/uniprot/NDUS3_HUMAN NDUS3_HUMAN]] Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). [[http://www.uniprot.org/uniprot/CX6B1_BOVIN CX6B1_BOVIN]] Connects the two COX monomers into the physiological dimeric form. [[http://www.uniprot.org/uniprot/UCRI_HUMAN UCRI_HUMAN]] Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis.  The transit peptide of the Rieske protein seems to form part of the bc1 complex and is considered to be the subunit 11/IX of that complex. [[http://www.uniprot.org/uniprot/COX7C_BOVIN COX7C_BOVIN]] This protein is one of the nuclear-coded polypeptide chains of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport. [[http://www.uniprot.org/uniprot/CYB_HUMAN CYB_HUMAN]] Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex) that is part of the mitochondrial respiratory chain. The b-c1 complex mediates electron transfer from ubiquinol to cytochrome c. Contributes to the generation of a proton gradient across the mitochondrial membrane that is then used for ATP synthesis.[UniProtKB:P00157] [[http://www.uniprot.org/uniprot/COX1_BOVIN COX1_BOVIN]] Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. [[http://www.uniprot.org/uniprot/NDUA3_HUMAN NDUA3_HUMAN]] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.<ref>PMID:27626371</ref>  [[http://www.uniprot.org/uniprot/QCR6_HUMAN QCR6_HUMAN]] This is a component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is part of the mitochondrial respiratory chain. This protein may mediate formation of the complex between cytochromes c and c1. [[http://www.uniprot.org/uniprot/CX7A1_BOVIN CX7A1_BOVIN]] This protein is one of the nuclear-coded polypeptide chains of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport. [[http://www.uniprot.org/uniprot/QCR2_HUMAN QCR2_HUMAN]] This is a component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is part of the mitochondrial respiratory chain. The core protein 2 is required for the assembly of the complex. [[http://www.uniprot.org/uniprot/QCR1_HUMAN QCR1_HUMAN]] This is a component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is part of the mitochondrial respiratory chain. This protein may mediate formation of the complex between cytochromes c and c1. [[http://www.uniprot.org/uniprot/NDUS8_HUMAN NDUS8_HUMAN]] Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). May donate electrons to ubiquinone. [[http://www.uniprot.org/uniprot/NDUA1_HUMAN NDUA1_HUMAN]] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.<ref>PMID:27626371</ref>  [[http://www.uniprot.org/uniprot/NDUV1_HUMAN NDUV1_HUMAN]] Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). [[http://www.uniprot.org/uniprot/NDUC2_HUMAN NDUC2_HUMAN]] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.<ref>PMID:27626371</ref>  [[http://www.uniprot.org/uniprot/NDUB6_HUMAN NDUB6_HUMAN]] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.<ref>PMID:27626371</ref>  [[http://www.uniprot.org/uniprot/NDUBB_HUMAN NDUBB_HUMAN]] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.<ref>PMID:27626371</ref>  [[http://www.uniprot.org/uniprot/NDUV2_HUMAN NDUV2_HUMAN]] Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). [[http://www.uniprot.org/uniprot/COX5A_BOVIN COX5A_BOVIN]] This is the heme A-containing chain of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport. [[http://www.uniprot.org/uniprot/NDUB5_HUMAN NDUB5_HUMAN]] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.<ref>PMID:27626371</ref>  [[http://www.uniprot.org/uniprot/COX6C_BOVIN COX6C_BOVIN]] This protein is one of the nuclear-coded polypeptide chains of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport. [[http://www.uniprot.org/uniprot/NDUB2_HUMAN NDUB2_HUMAN]] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.<ref>PMID:27626371</ref>  [[http://www.uniprot.org/uniprot/COX2_BOVIN COX2_BOVIN]] Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. Subunit 2 transfers the electrons from cytochrome c via its binuclear copper A center to the bimetallic center of the catalytic subunit 1. [[http://www.uniprot.org/uniprot/NDUB3_HUMAN NDUB3_HUMAN]] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.<ref>PMID:27626371</ref>  [[http://www.uniprot.org/uniprot/NDUAC_HUMAN NDUAC_HUMAN]] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.<ref>PMID:27626371</ref>  [[http://www.uniprot.org/uniprot/ACPM_HUMAN ACPM_HUMAN]] Carrier of the growing fatty acid chain in fatty acid biosynthesis in mitochondria. Accessory and non-catalytic subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), which functions in the transfer of electrons from NADH to the respiratory chain (By similarity). [[http://www.uniprot.org/uniprot/NDUS7_HUMAN NDUS7_HUMAN]] Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.<ref>PMID:12611891</ref>  [[http://www.uniprot.org/uniprot/NDUA9_HUMAN NDUA9_HUMAN]] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.<ref>PMID:22114105</ref> <ref>PMID:27626371</ref>  [[http://www.uniprot.org/uniprot/CX6A2_BOVIN CX6A2_BOVIN]] This protein is one of the nuclear-coded polypeptide chains of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport. [[http://www.uniprot.org/uniprot/COX3_BOVIN COX3_BOVIN]] Subunits I, II and III form the functional core of the enzyme complex. [[http://www.uniprot.org/uniprot/NDUA7_HUMAN NDUA7_HUMAN]] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.<ref>PMID:27626371</ref>  [[http://www.uniprot.org/uniprot/NDUB4_HUMAN NDUB4_HUMAN]] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.<ref>PMID:27626371</ref>  [[http://www.uniprot.org/uniprot/NDUA6_HUMAN NDUA6_HUMAN]] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed to be not involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.<ref>PMID:27626371</ref>  [[http://www.uniprot.org/uniprot/V9JN72_HUMAN V9JN72_HUMAN]] Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.[RuleBase:RU004419] [[http://www.uniprot.org/uniprot/NDUB1_HUMAN NDUB1_HUMAN]] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.<ref>PMID:27626371</ref>  [[http://www.uniprot.org/uniprot/NDUB7_HUMAN NDUB7_HUMAN]] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.<ref>PMID:27626371</ref>  [[http://www.uniprot.org/uniprot/NDUA2_HUMAN NDUA2_HUMAN]] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.  
<div style="background-color:#fffaf0;">
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
== Publication Abstract from PubMed ==

Revision as of 11:04, 6 December 2017

Warning: this is a large structure, and loading might take a long time or not happen at all.

Cryo-EM architecture of human respiratory chain megacomplex-I2III2IV2Cryo-EM architecture of human respiratory chain megacomplex-I2III2IV2

Structural highlights

5xti is a 138 chain structure with sequence from Bos taurus and Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:, , , , , , , , , , , , ,
Activity:NADH:ubiquinone reductase (H(+)-translocating), with EC number 1.6.5.3
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT
Warning: this is a large structure, and loading might take a long time or not happen at all.

Disease

[QCR7_HUMAN] Isolated CoQ-cytochrome C reductase deficiency. The disease is caused by mutations affecting the gene represented in this entry. [NDUAD_HUMAN] Papillary or follicular thyroid carcinoma. Disease susceptibility is associated with variations affecting the gene represented in this entry. Defects in NDUFA13 are a cause of a mitochondrial complex I deficiency characterized by early onset hypotonia, dyskinesia and sensorial deficiencies, as well as a severe optic neuropathy.[1] [NDUS6_HUMAN] Isolated NADH-CoQ reductase deficiency. The disease is caused by mutations affecting the gene represented in this entry. [NDUAA_HUMAN] Leigh syndrome with leukodystrophy. The disease is caused by mutations affecting the gene represented in this entry. [NDUAB_HUMAN] Isolated NADH-CoQ reductase deficiency. The disease is caused by mutations affecting the gene represented in this entry. [NDUS4_HUMAN] Isolated NADH-CoQ reductase deficiency;Leigh syndrome with leukodystrophy. The disease is caused by mutations affecting the gene represented in this entry. The disease is caused by mutations affecting the gene represented in this entry. [CY1_HUMAN] Isolated CoQ-cytochrome C reductase deficiency. The disease is caused by mutations affecting the gene represented in this entry. [NDUB9_HUMAN] Isolated NADH-CoQ reductase deficiency. [QCR8_HUMAN] Isolated CoQ-cytochrome C reductase deficiency. The disease is caused by mutations affecting the gene represented in this entry. [NDUS1_HUMAN] Isolated NADH-CoQ reductase deficiency;Leigh syndrome with leukodystrophy. The disease is caused by mutations affecting the gene represented in this entry. [NDUS3_HUMAN] Isolated NADH-CoQ reductase deficiency;Leigh syndrome with leukodystrophy. [CYB_HUMAN] Histiocytoid cardiomyopathy;Leber hereditary optic neuropathy;Isolated CoQ-cytochrome C reductase deficiency. Defects in MT-CYB are a rare cause of mitochondrial dysfunction underlying different myopathies. They include mitochondrial encephalomyopathy, hypertrophic cardiomyopathy (HCM), and sporadic mitochondrial myopathy (MM). In mitochondrial myopathy, exercise intolerance is the predominant symptom. Additional features include lactic acidosis, muscle weakness and/or myoglobinuria. Defects in MTCYB are also found in cases of exercise intolerance accompanied by deafness, mental retardation, retinitis pigmentosa, cataract, growth retardation, epilepsy (multisystem disorder).[2] [3] The disease is caused by mutations affecting the gene represented in this entry. The disease is caused by mutations affecting distinct genetic loci, including the gene represented in this entry. [QCR2_HUMAN] Isolated CoQ-cytochrome C reductase deficiency. The disease is caused by mutations affecting the gene represented in this entry. [NDUS8_HUMAN] Isolated NADH-CoQ reductase deficiency;Leigh syndrome with leukodystrophy. The disease is caused by mutations affecting the gene represented in this entry. [NDUA1_HUMAN] Isolated NADH-CoQ reductase deficiency. The disease is caused by mutations affecting the gene represented in this entry. [NDUV1_HUMAN] Isolated NADH-CoQ reductase deficiency;Leigh syndrome with leukodystrophy. The disease is caused by mutations affecting the gene represented in this entry. The disease is caused by mutations affecting the gene represented in this entry. [NDUBB_HUMAN] The disease is caused by mutations affecting the gene represented in this entry. The disease is caused by mutations affecting the gene represented in this entry. The disease may be caused by mutations affecting the gene represented in this entry. [NDUV2_HUMAN] Isolated NADH-CoQ reductase deficiency. [NDUB3_HUMAN] Isolated NADH-CoQ reductase deficiency. The disease is caused by mutations affecting the gene represented in this entry. [NDUAC_HUMAN] The disease is caused by mutations affecting the gene represented in this entry. [NDUS7_HUMAN] Isolated NADH-CoQ reductase deficiency;Leigh syndrome with leukodystrophy. The disease is caused by mutations affecting the gene represented in this entry. The disease is caused by mutations affecting the gene represented in this entry. [NDUA9_HUMAN] Isolated NADH-CoQ reductase deficiency. The disease is caused by mutations affecting the gene represented in this entry.

Function

[B9EE38_HUMAN] Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.[SAAS:SAAS00136983] [Q4GRX1_HUMAN] Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.[SAAS:SAAS00093760] [QCR7_HUMAN] This is a component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is part of the mitochondrial respiratory chain. This component is involved in redox-linked proton pumping. [NDUAD_HUMAN] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis (PubMed:27626371). Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (PubMed:27626371). Involved in the interferon/all-trans-retinoic acid (IFN/RA) induced cell death. This apoptotic activity is inhibited by interaction with viral IRF1. Prevents the transactivation of STAT3 target genes. May play a role in CARD15-mediated innate mucosal responses and serve to regulate intestinal epithelial cell responses to microbes (PubMed:15753091).[4] [5] [6] [7] [NDUA5_HUMAN] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.[8] [NDUB8_HUMAN] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.[9] [NDUS6_HUMAN] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.[10] [NDUAA_HUMAN] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.[11] [COX7B_BOVIN] This protein is one of the nuclear-coded polypeptide chains of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport. [NDUBA_HUMAN] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.[12] [COX8B_BOVIN] This protein is one of the nuclear-coded polypeptide chains of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport. [QCR9_HUMAN] This is a component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is part of the mitochondrial respiratory chain. This subunit interacts with cytochrome c1 (By similarity). [NDUAB_HUMAN] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.[13] [NDUV3_HUMAN] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. May be the terminally assembled subunit of Complex I.[14] [NDUS5_HUMAN] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.[15] [X5BVZ3_HUMAN] Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.[SAAS:SAAS00061107] [NDUS4_HUMAN] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.[16] [17] [COX41_BOVIN] This protein is one of the nuclear-coded polypeptide chains of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport. [CY1_HUMAN] This is the heme-containing component of the cytochrome b-c1 complex, which accepts electrons from Rieske protein and transfers electrons to cytochrome c in the mitochondrial respiratory chain. [NDUC1_HUMAN] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.[18] [COX5B_BOVIN] This protein is one of the nuclear-coded polypeptide chains of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport. [NDUB9_HUMAN] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed to be not involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.[19] [QCR10_HUMAN] This is a component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is part of the mitochondrial respiratory chain. This protein may be closely linked to the iron-sulfur protein in the complex and function as an iron-sulfur protein binding factor. [QCR8_HUMAN] This is a component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is part of the mitochondrial respiratory chain. This subunit, together with cytochrome b, binds to ubiquinone. [NDUS1_HUMAN] Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). This is the largest subunit of complex I and it is a component of the iron-sulfur (IP) fragment of the enzyme. It may form part of the active site crevice where NADH is oxidized. [NDUS3_HUMAN] Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). [CX6B1_BOVIN] Connects the two COX monomers into the physiological dimeric form. [UCRI_HUMAN] Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis. The transit peptide of the Rieske protein seems to form part of the bc1 complex and is considered to be the subunit 11/IX of that complex. [COX7C_BOVIN] This protein is one of the nuclear-coded polypeptide chains of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport. [CYB_HUMAN] Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex) that is part of the mitochondrial respiratory chain. The b-c1 complex mediates electron transfer from ubiquinol to cytochrome c. Contributes to the generation of a proton gradient across the mitochondrial membrane that is then used for ATP synthesis.[UniProtKB:P00157] [COX1_BOVIN] Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. [NDUA3_HUMAN] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.[20] [QCR6_HUMAN] This is a component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is part of the mitochondrial respiratory chain. This protein may mediate formation of the complex between cytochromes c and c1. [CX7A1_BOVIN] This protein is one of the nuclear-coded polypeptide chains of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport. [QCR2_HUMAN] This is a component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is part of the mitochondrial respiratory chain. The core protein 2 is required for the assembly of the complex. [QCR1_HUMAN] This is a component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is part of the mitochondrial respiratory chain. This protein may mediate formation of the complex between cytochromes c and c1. [NDUS8_HUMAN] Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). May donate electrons to ubiquinone. [NDUA1_HUMAN] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.[21] [NDUV1_HUMAN] Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). [NDUC2_HUMAN] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.[22] [NDUB6_HUMAN] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.[23] [NDUBB_HUMAN] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.[24] [NDUV2_HUMAN] Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). [COX5A_BOVIN] This is the heme A-containing chain of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport. [NDUB5_HUMAN] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.[25] [COX6C_BOVIN] This protein is one of the nuclear-coded polypeptide chains of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport. [NDUB2_HUMAN] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.[26] [COX2_BOVIN] Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. Subunit 2 transfers the electrons from cytochrome c via its binuclear copper A center to the bimetallic center of the catalytic subunit 1. [NDUB3_HUMAN] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.[27] [NDUAC_HUMAN] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.[28] [ACPM_HUMAN] Carrier of the growing fatty acid chain in fatty acid biosynthesis in mitochondria. Accessory and non-catalytic subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), which functions in the transfer of electrons from NADH to the respiratory chain (By similarity). [NDUS7_HUMAN] Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.[29] [NDUA9_HUMAN] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.[30] [31] [CX6A2_BOVIN] This protein is one of the nuclear-coded polypeptide chains of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport. [COX3_BOVIN] Subunits I, II and III form the functional core of the enzyme complex. [NDUA7_HUMAN] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.[32] [NDUB4_HUMAN] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.[33] [NDUA6_HUMAN] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed to be not involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.[34] [V9JN72_HUMAN] Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.[RuleBase:RU004419] [NDUB1_HUMAN] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.[35] [NDUB7_HUMAN] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.[36] [NDUA2_HUMAN] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.

Publication Abstract from PubMed

The respiratory megacomplex represents the highest-order assembly of respiratory chain complexes, and it allows mitochondria to respond to energy-requiring conditions. To understand its architecture, we examined the human respiratory chain megacomplex-I2III2IV2 (MCI2III2IV2) with 140 subunits and a subset of associated cofactors using cryo-electron microscopy. The MCI2III2IV2 forms a circular structure with the dimeric CIII located in the center, where it is surrounded by two copies each of CI and CIV. Two cytochrome c (Cyt.c) molecules are positioned to accept electrons on the surface of the c1 state CIII dimer. Analyses indicate that CII could insert into the gaps between CI and CIV to form a closed ring, which we termed the electron transport chain supercomplex. The structure not only reveals the precise assignment of individual subunits of human CI and CIII, but also enables future in-depth analysis of the electron transport chain as a whole.

Architecture of Human Mitochondrial Respiratory Megacomplex I2III2IV2.,Guo R, Zong S, Wu M, Gu J, Yang M Cell. 2017 Sep 7;170(6):1247-1257.e12. doi: 10.1016/j.cell.2017.07.050. Epub 2017, Aug 24. PMID:28844695[37]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Angebault C, Charif M, Guegen N, Piro-Megy C, Mousson de Camaret B, Procaccio V, Guichet PO, Hebrard M, Manes G, Leboucq N, Rivier F, Hamel CP, Lenaers G, Roubertie A. Mutation in NDUFA13/GRIM19 leads to early onset hypotonia, dyskinesia and sensorial deficiencies, and mitochondrial complex I instability. Hum Mol Genet. 2015 Jul 15;24(14):3948-55. doi: 10.1093/hmg/ddv133. Epub 2015 Apr, 21. PMID:25901006 doi:http://dx.doi.org/10.1093/hmg/ddv133
  2. Keightley JA, Anitori R, Burton MD, Quan F, Buist NR, Kennaway NG. Mitochondrial encephalomyopathy and complex III deficiency associated with a stop-codon mutation in the cytochrome b gene. Am J Hum Genet. 2000 Dec;67(6):1400-10. Epub 2000 Oct 20. PMID:11047755 doi:http://dx.doi.org/10.1086/316900
  3. Wibrand F, Ravn K, Schwartz M, Rosenberg T, Horn N, Vissing J. Multisystem disorder associated with a missense mutation in the mitochondrial cytochrome b gene. Ann Neurol. 2001 Oct;50(4):540-3. PMID:11601507
  4. Lufei C, Ma J, Huang G, Zhang T, Novotny-Diermayr V, Ong CT, Cao X. GRIM-19, a death-regulatory gene product, suppresses Stat3 activity via functional interaction. EMBO J. 2003 Mar 17;22(6):1325-35. PMID:12628925 doi:http://dx.doi.org/10.1093/emboj/cdg135
  5. Zhang J, Yang J, Roy SK, Tininini S, Hu J, Bromberg JF, Poli V, Stark GR, Kalvakolanu DV. The cell death regulator GRIM-19 is an inhibitor of signal transducer and activator of transcription 3. Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9342-7. Epub 2003 Jul 16. PMID:12867595 doi:http://dx.doi.org/10.1073/pnas.1633516100
  6. Barnich N, Hisamatsu T, Aguirre JE, Xavier R, Reinecker HC, Podolsky DK. GRIM-19 interacts with nucleotide oligomerization domain 2 and serves as downstream effector of anti-bacterial function in intestinal epithelial cells. J Biol Chem. 2005 May 13;280(19):19021-6. Epub 2005 Mar 7. PMID:15753091 doi:http://dx.doi.org/10.1074/jbc.M413776200
  7. Stroud DA, Surgenor EE, Formosa LE, Reljic B, Frazier AE, Dibley MG, Osellame LD, Stait T, Beilharz TH, Thorburn DR, Salim A, Ryan MT. Accessory subunits are integral for assembly and function of human mitochondrial complex I. Nature. 2016 Oct 6;538(7623):123-126. doi: 10.1038/nature19754. Epub 2016 Sep 14. PMID:27626371 doi:http://dx.doi.org/10.1038/nature19754
  8. Stroud DA, Surgenor EE, Formosa LE, Reljic B, Frazier AE, Dibley MG, Osellame LD, Stait T, Beilharz TH, Thorburn DR, Salim A, Ryan MT. Accessory subunits are integral for assembly and function of human mitochondrial complex I. Nature. 2016 Oct 6;538(7623):123-126. doi: 10.1038/nature19754. Epub 2016 Sep 14. PMID:27626371 doi:http://dx.doi.org/10.1038/nature19754
  9. Stroud DA, Surgenor EE, Formosa LE, Reljic B, Frazier AE, Dibley MG, Osellame LD, Stait T, Beilharz TH, Thorburn DR, Salim A, Ryan MT. Accessory subunits are integral for assembly and function of human mitochondrial complex I. Nature. 2016 Oct 6;538(7623):123-126. doi: 10.1038/nature19754. Epub 2016 Sep 14. PMID:27626371 doi:http://dx.doi.org/10.1038/nature19754
  10. Stroud DA, Surgenor EE, Formosa LE, Reljic B, Frazier AE, Dibley MG, Osellame LD, Stait T, Beilharz TH, Thorburn DR, Salim A, Ryan MT. Accessory subunits are integral for assembly and function of human mitochondrial complex I. Nature. 2016 Oct 6;538(7623):123-126. doi: 10.1038/nature19754. Epub 2016 Sep 14. PMID:27626371 doi:http://dx.doi.org/10.1038/nature19754
  11. Stroud DA, Surgenor EE, Formosa LE, Reljic B, Frazier AE, Dibley MG, Osellame LD, Stait T, Beilharz TH, Thorburn DR, Salim A, Ryan MT. Accessory subunits are integral for assembly and function of human mitochondrial complex I. Nature. 2016 Oct 6;538(7623):123-126. doi: 10.1038/nature19754. Epub 2016 Sep 14. PMID:27626371 doi:http://dx.doi.org/10.1038/nature19754
  12. Stroud DA, Surgenor EE, Formosa LE, Reljic B, Frazier AE, Dibley MG, Osellame LD, Stait T, Beilharz TH, Thorburn DR, Salim A, Ryan MT. Accessory subunits are integral for assembly and function of human mitochondrial complex I. Nature. 2016 Oct 6;538(7623):123-126. doi: 10.1038/nature19754. Epub 2016 Sep 14. PMID:27626371 doi:http://dx.doi.org/10.1038/nature19754
  13. Stroud DA, Surgenor EE, Formosa LE, Reljic B, Frazier AE, Dibley MG, Osellame LD, Stait T, Beilharz TH, Thorburn DR, Salim A, Ryan MT. Accessory subunits are integral for assembly and function of human mitochondrial complex I. Nature. 2016 Oct 6;538(7623):123-126. doi: 10.1038/nature19754. Epub 2016 Sep 14. PMID:27626371 doi:http://dx.doi.org/10.1038/nature19754
  14. Stroud DA, Surgenor EE, Formosa LE, Reljic B, Frazier AE, Dibley MG, Osellame LD, Stait T, Beilharz TH, Thorburn DR, Salim A, Ryan MT. Accessory subunits are integral for assembly and function of human mitochondrial complex I. Nature. 2016 Oct 6;538(7623):123-126. doi: 10.1038/nature19754. Epub 2016 Sep 14. PMID:27626371 doi:http://dx.doi.org/10.1038/nature19754
  15. Stroud DA, Surgenor EE, Formosa LE, Reljic B, Frazier AE, Dibley MG, Osellame LD, Stait T, Beilharz TH, Thorburn DR, Salim A, Ryan MT. Accessory subunits are integral for assembly and function of human mitochondrial complex I. Nature. 2016 Oct 6;538(7623):123-126. doi: 10.1038/nature19754. Epub 2016 Sep 14. PMID:27626371 doi:http://dx.doi.org/10.1038/nature19754
  16. Murray J, Zhang B, Taylor SW, Oglesbee D, Fahy E, Marusich MF, Ghosh SS, Capaldi RA. The subunit composition of the human NADH dehydrogenase obtained by rapid one-step immunopurification. J Biol Chem. 2003 Apr 18;278(16):13619-22. Epub 2003 Feb 28. PMID:12611891 doi:http://dx.doi.org/10.1074/jbc.C300064200
  17. van den Heuvel L, Ruitenbeek W, Smeets R, Gelman-Kohan Z, Elpeleg O, Loeffen J, Trijbels F, Mariman E, de Bruijn D, Smeitink J. Demonstration of a new pathogenic mutation in human complex I deficiency: a 5-bp duplication in the nuclear gene encoding the 18-kD (AQDQ) subunit. Am J Hum Genet. 1998 Feb;62(2):262-8. PMID:9463323 doi:http://dx.doi.org/10.1086/301716
  18. Stroud DA, Surgenor EE, Formosa LE, Reljic B, Frazier AE, Dibley MG, Osellame LD, Stait T, Beilharz TH, Thorburn DR, Salim A, Ryan MT. Accessory subunits are integral for assembly and function of human mitochondrial complex I. Nature. 2016 Oct 6;538(7623):123-126. doi: 10.1038/nature19754. Epub 2016 Sep 14. PMID:27626371 doi:http://dx.doi.org/10.1038/nature19754
  19. Stroud DA, Surgenor EE, Formosa LE, Reljic B, Frazier AE, Dibley MG, Osellame LD, Stait T, Beilharz TH, Thorburn DR, Salim A, Ryan MT. Accessory subunits are integral for assembly and function of human mitochondrial complex I. Nature. 2016 Oct 6;538(7623):123-126. doi: 10.1038/nature19754. Epub 2016 Sep 14. PMID:27626371 doi:http://dx.doi.org/10.1038/nature19754
  20. Stroud DA, Surgenor EE, Formosa LE, Reljic B, Frazier AE, Dibley MG, Osellame LD, Stait T, Beilharz TH, Thorburn DR, Salim A, Ryan MT. Accessory subunits are integral for assembly and function of human mitochondrial complex I. Nature. 2016 Oct 6;538(7623):123-126. doi: 10.1038/nature19754. Epub 2016 Sep 14. PMID:27626371 doi:http://dx.doi.org/10.1038/nature19754
  21. Stroud DA, Surgenor EE, Formosa LE, Reljic B, Frazier AE, Dibley MG, Osellame LD, Stait T, Beilharz TH, Thorburn DR, Salim A, Ryan MT. Accessory subunits are integral for assembly and function of human mitochondrial complex I. Nature. 2016 Oct 6;538(7623):123-126. doi: 10.1038/nature19754. Epub 2016 Sep 14. PMID:27626371 doi:http://dx.doi.org/10.1038/nature19754
  22. Stroud DA, Surgenor EE, Formosa LE, Reljic B, Frazier AE, Dibley MG, Osellame LD, Stait T, Beilharz TH, Thorburn DR, Salim A, Ryan MT. Accessory subunits are integral for assembly and function of human mitochondrial complex I. Nature. 2016 Oct 6;538(7623):123-126. doi: 10.1038/nature19754. Epub 2016 Sep 14. PMID:27626371 doi:http://dx.doi.org/10.1038/nature19754
  23. Stroud DA, Surgenor EE, Formosa LE, Reljic B, Frazier AE, Dibley MG, Osellame LD, Stait T, Beilharz TH, Thorburn DR, Salim A, Ryan MT. Accessory subunits are integral for assembly and function of human mitochondrial complex I. Nature. 2016 Oct 6;538(7623):123-126. doi: 10.1038/nature19754. Epub 2016 Sep 14. PMID:27626371 doi:http://dx.doi.org/10.1038/nature19754
  24. Stroud DA, Surgenor EE, Formosa LE, Reljic B, Frazier AE, Dibley MG, Osellame LD, Stait T, Beilharz TH, Thorburn DR, Salim A, Ryan MT. Accessory subunits are integral for assembly and function of human mitochondrial complex I. Nature. 2016 Oct 6;538(7623):123-126. doi: 10.1038/nature19754. Epub 2016 Sep 14. PMID:27626371 doi:http://dx.doi.org/10.1038/nature19754
  25. Stroud DA, Surgenor EE, Formosa LE, Reljic B, Frazier AE, Dibley MG, Osellame LD, Stait T, Beilharz TH, Thorburn DR, Salim A, Ryan MT. Accessory subunits are integral for assembly and function of human mitochondrial complex I. Nature. 2016 Oct 6;538(7623):123-126. doi: 10.1038/nature19754. Epub 2016 Sep 14. PMID:27626371 doi:http://dx.doi.org/10.1038/nature19754
  26. Stroud DA, Surgenor EE, Formosa LE, Reljic B, Frazier AE, Dibley MG, Osellame LD, Stait T, Beilharz TH, Thorburn DR, Salim A, Ryan MT. Accessory subunits are integral for assembly and function of human mitochondrial complex I. Nature. 2016 Oct 6;538(7623):123-126. doi: 10.1038/nature19754. Epub 2016 Sep 14. PMID:27626371 doi:http://dx.doi.org/10.1038/nature19754
  27. Stroud DA, Surgenor EE, Formosa LE, Reljic B, Frazier AE, Dibley MG, Osellame LD, Stait T, Beilharz TH, Thorburn DR, Salim A, Ryan MT. Accessory subunits are integral for assembly and function of human mitochondrial complex I. Nature. 2016 Oct 6;538(7623):123-126. doi: 10.1038/nature19754. Epub 2016 Sep 14. PMID:27626371 doi:http://dx.doi.org/10.1038/nature19754
  28. Stroud DA, Surgenor EE, Formosa LE, Reljic B, Frazier AE, Dibley MG, Osellame LD, Stait T, Beilharz TH, Thorburn DR, Salim A, Ryan MT. Accessory subunits are integral for assembly and function of human mitochondrial complex I. Nature. 2016 Oct 6;538(7623):123-126. doi: 10.1038/nature19754. Epub 2016 Sep 14. PMID:27626371 doi:http://dx.doi.org/10.1038/nature19754
  29. Murray J, Zhang B, Taylor SW, Oglesbee D, Fahy E, Marusich MF, Ghosh SS, Capaldi RA. The subunit composition of the human NADH dehydrogenase obtained by rapid one-step immunopurification. J Biol Chem. 2003 Apr 18;278(16):13619-22. Epub 2003 Feb 28. PMID:12611891 doi:http://dx.doi.org/10.1074/jbc.C300064200
  30. van den Bosch BJ, Gerards M, Sluiter W, Stegmann AP, Jongen EL, Hellebrekers DM, Oegema R, Lambrichs EH, Prokisch H, Danhauser K, Schoonderwoerd K, de Coo IF, Smeets HJ. Defective NDUFA9 as a novel cause of neonatally fatal complex I disease. J Med Genet. 2012 Jan;49(1):10-5. doi: 10.1136/jmedgenet-2011-100466. Epub 2011, Nov 23. PMID:22114105 doi:http://dx.doi.org/10.1136/jmedgenet-2011-100466
  31. Stroud DA, Surgenor EE, Formosa LE, Reljic B, Frazier AE, Dibley MG, Osellame LD, Stait T, Beilharz TH, Thorburn DR, Salim A, Ryan MT. Accessory subunits are integral for assembly and function of human mitochondrial complex I. Nature. 2016 Oct 6;538(7623):123-126. doi: 10.1038/nature19754. Epub 2016 Sep 14. PMID:27626371 doi:http://dx.doi.org/10.1038/nature19754
  32. Stroud DA, Surgenor EE, Formosa LE, Reljic B, Frazier AE, Dibley MG, Osellame LD, Stait T, Beilharz TH, Thorburn DR, Salim A, Ryan MT. Accessory subunits are integral for assembly and function of human mitochondrial complex I. Nature. 2016 Oct 6;538(7623):123-126. doi: 10.1038/nature19754. Epub 2016 Sep 14. PMID:27626371 doi:http://dx.doi.org/10.1038/nature19754
  33. Stroud DA, Surgenor EE, Formosa LE, Reljic B, Frazier AE, Dibley MG, Osellame LD, Stait T, Beilharz TH, Thorburn DR, Salim A, Ryan MT. Accessory subunits are integral for assembly and function of human mitochondrial complex I. Nature. 2016 Oct 6;538(7623):123-126. doi: 10.1038/nature19754. Epub 2016 Sep 14. PMID:27626371 doi:http://dx.doi.org/10.1038/nature19754
  34. Stroud DA, Surgenor EE, Formosa LE, Reljic B, Frazier AE, Dibley MG, Osellame LD, Stait T, Beilharz TH, Thorburn DR, Salim A, Ryan MT. Accessory subunits are integral for assembly and function of human mitochondrial complex I. Nature. 2016 Oct 6;538(7623):123-126. doi: 10.1038/nature19754. Epub 2016 Sep 14. PMID:27626371 doi:http://dx.doi.org/10.1038/nature19754
  35. Stroud DA, Surgenor EE, Formosa LE, Reljic B, Frazier AE, Dibley MG, Osellame LD, Stait T, Beilharz TH, Thorburn DR, Salim A, Ryan MT. Accessory subunits are integral for assembly and function of human mitochondrial complex I. Nature. 2016 Oct 6;538(7623):123-126. doi: 10.1038/nature19754. Epub 2016 Sep 14. PMID:27626371 doi:http://dx.doi.org/10.1038/nature19754
  36. Stroud DA, Surgenor EE, Formosa LE, Reljic B, Frazier AE, Dibley MG, Osellame LD, Stait T, Beilharz TH, Thorburn DR, Salim A, Ryan MT. Accessory subunits are integral for assembly and function of human mitochondrial complex I. Nature. 2016 Oct 6;538(7623):123-126. doi: 10.1038/nature19754. Epub 2016 Sep 14. PMID:27626371 doi:http://dx.doi.org/10.1038/nature19754
  37. Guo R, Zong S, Wu M, Gu J, Yang M. Architecture of Human Mitochondrial Respiratory Megacomplex I2III2IV2. Cell. 2017 Sep 7;170(6):1247-1257.e12. doi: 10.1016/j.cell.2017.07.050. Epub 2017, Aug 24. PMID:28844695 doi:http://dx.doi.org/10.1016/j.cell.2017.07.050

5xti, resolution 17.40Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA