5oa1: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 10: Line 10:
</table>
</table>
== Function ==
== Function ==
[[http://www.uniprot.org/uniprot/RPAC2_YEAST RPAC2_YEAST]] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Common core component of RNA polymerases I and III which synthesize ribosomal RNA precursors and small RNAs, such as 5S rRNA and tRNAs, respectively. [[http://www.uniprot.org/uniprot/RPA43_YEAST RPA43_YEAST]] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Component of RNA polymerase I which synthesizes ribosomal RNA precursors. Through its association with RRN3 is involved in recruitment of Pol I to rDNA promoters. In vitro, the A13-A43 subcomplex binds single-stranded RNA.<ref>PMID:11032814</ref> <ref>PMID:12888498</ref>  [[http://www.uniprot.org/uniprot/RPA2_YEAST RPA2_YEAST]] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Second largest core component of RNA polymerase I which synthesizes ribosomal RNA precursors. Proposed to contribute to the polymerase catalytic activity and forms the polymerase active center together with the largest subunit. Pol I is composed of mobile elements and RPA2 is part of the core element with the central large cleft and probably a clamp element that moves to open and close the cleft (By similarity). [[http://www.uniprot.org/uniprot/RPA1_YEAST RPA1_YEAST]] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Largest and catalytic core component of RNA polymerase I which synthesizes ribosomal RNA precursors. Forms the polymerase active center together with the second largest subunit. A single stranded DNA template strand of the promoter is positioned within the central active site cleft of Pol I. A bridging helix emanates from RPA1 and crosses the cleft near the catalytic site and is thought to promote translocation of Pol I by acting as a ratchet that moves the RNA-DNA hybrid through the active site by switching from straight to bent conformations at each step of nucleotide addition (By similarity). [[http://www.uniprot.org/uniprot/RRN7_YEAST RRN7_YEAST]] Component of RNA polymerase I core factor complex (CF) that acts as a SUA7/TFIIB-like factor and plays a key role in multiple steps during transcription initiation such as pre-initiation complex (PIC) assembly and postpolymerase recruitment events in polymerase I (Pol I) transcription. Binds rDNA promoters and plays a role in Pol I recruitment. After binding of UAF (upstream activation factor) to an upstream element of the promoter, CF is recruited in a SPT15/TBP-dependent manner to form a pre-initiation complex.<ref>PMID:21921198</ref> <ref>PMID:21940764</ref> <ref>PMID:8887672</ref>  [[http://www.uniprot.org/uniprot/RPA49_YEAST RPA49_YEAST]] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Component of RNA polymerase I which synthesizes ribosomal RNA precursors.  A49 is easily dissociated from the rest of pol A (pol I), producing the form A*, which shows impaired transcriptional activity and increased sensitivity to alpha-amanitin. The function of A49 might be linked to the RNase H activity that was found associated with this subunit. [[http://www.uniprot.org/uniprot/RPAB2_YEAST RPAB2_YEAST]] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Common component of RNA polymerases I, II and III which synthesize ribosomal RNA precursors, mRNA precursors and many functional non-coding RNAs, and small RNAs, such as 5S rRNA and tRNAs, respectively. Pol II is the central component of the basal RNA polymerase II transcription machinery. Pols are composed of mobile elements that move relative to each other. In Pol II, RPB6 is part of the clamp element and togther with parts of RPB1 and RPB2 forms a pocket to which the RPB4-RPB7 subcomplex binds (By similarity). [[http://www.uniprot.org/uniprot/RPAC1_YEAST RPAC1_YEAST]] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Common component of RNA polymerases I and III which synthesize ribosomal RNA precursors and small RNAs, such as 5S rRNA and tRNAs, respectively. RPAC1 is part of the Pol core element with the central large cleft and probably a clamp element that moves to open and close the cleft (By similarity). [[http://www.uniprot.org/uniprot/RPA12_YEAST RPA12_YEAST]] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Component of RNA polymerase I which synthesizes ribosomal RNA precursors. Involved in transcriptional termination. Involved in recruitment of RPA49 to Pol I.<ref>PMID:15073335</ref>  [[http://www.uniprot.org/uniprot/RPAB4_YEAST RPAB4_YEAST]] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Common component of RNA polymerases I, II and III which synthesize ribosomal RNA precursors, mRNA precursors and many functional non-coding RNAs, and a small RNAs, such as 5S rRNA and tRNAs, respectively. Pols are composed of mobile elements that move relative to each other. In Pol II, the core element with the central large cleft comprises RPB3, RBP10, RPB11, RPB12 and regions of RPB1 and RPB2 forming the active center. [[http://www.uniprot.org/uniprot/RPA34_YEAST RPA34_YEAST]] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Component of RNA polymerase I which synthesizes ribosomal RNA precursors.<ref>PMID:9121426</ref>  [[http://www.uniprot.org/uniprot/RRN3_YEAST RRN3_YEAST]] Required for efficient transcription initiation by RNA polymerase I. Interacts with Pol I in the absence of template DNA and stimulates recruitment of Pol I, but does not remain as part of stable preinitiation complex. [[http://www.uniprot.org/uniprot/RRN11_YEAST RRN11_YEAST]] Acts as component of the core factor (CF) complex which is essential for the initiation of rDNA transcription by RNA polymerase I. After binding of UAF (upstream activation factor) to an upstream element of the promoter, CF is recruited in a SPT15/TBP-dependent manner to form a preinitiation complex.<ref>PMID:8887672</ref>  [[http://www.uniprot.org/uniprot/RPAB3_YEAST RPAB3_YEAST]] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Common component of RNA polymerases I, II and III which synthesize ribosomal RNA precursors, mRNA precursors and many functional non-coding RNAs, and small RNAs, such as 5S rRNA and tRNAs, respectively. [[http://www.uniprot.org/uniprot/RPA14_YEAST RPA14_YEAST]] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Component of RNA polymerase I which synthesizes ribosomal RNA precursors. A14 seems to play a role in the stability of subunits ABC23 and A43. In vitro, the A14-A43 subcomplex binds single-stranded RNA.<ref>PMID:12888498</ref>  [[http://www.uniprot.org/uniprot/RPAB5_YEAST RPAB5_YEAST]] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Common component of RNA polymerases I, II and III which synthesize ribosomal RNA precursors, mRNA precursors and many functional non-coding RNAs, and a small RNAs, such as 5S rRNA and tRNAs, respectively. Pol II is the central component of the basal RNA polymerase II transcription machinery. Pols are composed of mobile elements that move relative to each other. In Pol II, RBP10 is part of the core element with the central large cleft. [[http://www.uniprot.org/uniprot/RRN6_YEAST RRN6_YEAST]] Acts as component of the core factor (CF) complex which is essential for the initiation of rDNA transcription by RNA polymerase I. After binding of UAF (upstream activation factor) to an upstream element of the promoter, CF is recruited in a SPT15/TBP-dependent manner to form a preinitiation complex.<ref>PMID:8887672</ref>  [[http://www.uniprot.org/uniprot/RPAB1_YEAST RPAB1_YEAST]] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Common component of RNA polymerases I, II and III which synthesize ribosomal RNA precursors, mRNA precursors and many functional non-coding RNAs, and small RNAs, such as 5S rRNA and tRNAs, respectively. Pol II is the central component of the basal RNA polymerase II transcription machinery. Pols are composed of mobile elements that move relative to each other. In Pol II, RPB5 is part of the lower jaw surrounding the central large cleft and thought to grab the incoming DNA template. Seems to be the major component in this process (By similarity).  
[[http://www.uniprot.org/uniprot/RPAC2_YEAST RPAC2_YEAST]] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Common core component of RNA polymerases I and III which synthesize ribosomal RNA precursors and small RNAs, such as 5S rRNA and tRNAs, respectively. [[http://www.uniprot.org/uniprot/RPA43_YEAST RPA43_YEAST]] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Component of RNA polymerase I which synthesizes ribosomal RNA precursors. Through its association with RRN3 is involved in recruitment of Pol I to rDNA promoters. In vitro, the A13-A43 subcomplex binds single-stranded RNA.<ref>PMID:11032814</ref> <ref>PMID:12888498</ref>  [[http://www.uniprot.org/uniprot/RPA2_YEAST RPA2_YEAST]] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Second largest core component of RNA polymerase I which synthesizes ribosomal RNA precursors. Proposed to contribute to the polymerase catalytic activity and forms the polymerase active center together with the largest subunit. Pol I is composed of mobile elements and RPA2 is part of the core element with the central large cleft and probably a clamp element that moves to open and close the cleft (By similarity). [[http://www.uniprot.org/uniprot/RPA1_YEAST RPA1_YEAST]] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Largest and catalytic core component of RNA polymerase I which synthesizes ribosomal RNA precursors. Forms the polymerase active center together with the second largest subunit. A single stranded DNA template strand of the promoter is positioned within the central active site cleft of Pol I. A bridging helix emanates from RPA1 and crosses the cleft near the catalytic site and is thought to promote translocation of Pol I by acting as a ratchet that moves the RNA-DNA hybrid through the active site by switching from straight to bent conformations at each step of nucleotide addition (By similarity). [[http://www.uniprot.org/uniprot/RRN7_YEAST RRN7_YEAST]] Component of RNA polymerase I core factor complex (CF) that acts as a SUA7/TFIIB-like factor and plays a key role in multiple steps during transcription initiation such as pre-initiation complex (PIC) assembly and postpolymerase recruitment events in polymerase I (Pol I) transcription. Binds rDNA promoters and plays a role in Pol I recruitment. After binding of UAF (upstream activation factor) to an upstream element of the promoter, CF is recruited in a SPT15/TBP-dependent manner to form a pre-initiation complex.<ref>PMID:21921198</ref> <ref>PMID:21940764</ref> <ref>PMID:8887672</ref>  [[http://www.uniprot.org/uniprot/RPA49_YEAST RPA49_YEAST]] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Component of RNA polymerase I which synthesizes ribosomal RNA precursors.  A49 is easily dissociated from the rest of pol A (pol I), producing the form A*, which shows impaired transcriptional activity and increased sensitivity to alpha-amanitin. The function of A49 might be linked to the RNase H activity that was found associated with this subunit. [[http://www.uniprot.org/uniprot/RPAB2_YEAST RPAB2_YEAST]] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Common component of RNA polymerases I, II and III which synthesize ribosomal RNA precursors, mRNA precursors and many functional non-coding RNAs, and small RNAs, such as 5S rRNA and tRNAs, respectively. Pol II is the central component of the basal RNA polymerase II transcription machinery. Pols are composed of mobile elements that move relative to each other. In Pol II, RPB6 is part of the clamp element and togther with parts of RPB1 and RPB2 forms a pocket to which the RPB4-RPB7 subcomplex binds (By similarity). [[http://www.uniprot.org/uniprot/RPAC1_YEAST RPAC1_YEAST]] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Common component of RNA polymerases I and III which synthesize ribosomal RNA precursors and small RNAs, such as 5S rRNA and tRNAs, respectively. RPAC1 is part of the Pol core element with the central large cleft and probably a clamp element that moves to open and close the cleft (By similarity). [[http://www.uniprot.org/uniprot/RPA12_YEAST RPA12_YEAST]] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Component of RNA polymerase I which synthesizes ribosomal RNA precursors. Involved in transcriptional termination. Involved in recruitment of RPA49 to Pol I.<ref>PMID:15073335</ref>  [[http://www.uniprot.org/uniprot/RPAB4_YEAST RPAB4_YEAST]] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Common component of RNA polymerases I, II and III which synthesize ribosomal RNA precursors, mRNA precursors and many functional non-coding RNAs, and a small RNAs, such as 5S rRNA and tRNAs, respectively. Pols are composed of mobile elements that move relative to each other. In Pol II, the core element with the central large cleft comprises RPB3, RBP10, RPB11, RPB12 and regions of RPB1 and RPB2 forming the active center. [[http://www.uniprot.org/uniprot/RRN11_YEAST RRN11_YEAST]] Acts as component of the core factor (CF) complex which is essential for the initiation of rDNA transcription by RNA polymerase I. After binding of UAF (upstream activation factor) to an upstream element of the promoter, CF is recruited in a SPT15/TBP-dependent manner to form a preinitiation complex.<ref>PMID:8887672</ref>  [[http://www.uniprot.org/uniprot/RPA34_YEAST RPA34_YEAST]] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Component of RNA polymerase I which synthesizes ribosomal RNA precursors.<ref>PMID:9121426</ref>  [[http://www.uniprot.org/uniprot/RRN3_YEAST RRN3_YEAST]] Required for efficient transcription initiation by RNA polymerase I. Interacts with Pol I in the absence of template DNA and stimulates recruitment of Pol I, but does not remain as part of stable preinitiation complex. [[http://www.uniprot.org/uniprot/RPAB3_YEAST RPAB3_YEAST]] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Common component of RNA polymerases I, II and III which synthesize ribosomal RNA precursors, mRNA precursors and many functional non-coding RNAs, and small RNAs, such as 5S rRNA and tRNAs, respectively. [[http://www.uniprot.org/uniprot/RPA14_YEAST RPA14_YEAST]] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Component of RNA polymerase I which synthesizes ribosomal RNA precursors. A14 seems to play a role in the stability of subunits ABC23 and A43. In vitro, the A14-A43 subcomplex binds single-stranded RNA.<ref>PMID:12888498</ref>  [[http://www.uniprot.org/uniprot/RRN6_YEAST RRN6_YEAST]] Acts as component of the core factor (CF) complex which is essential for the initiation of rDNA transcription by RNA polymerase I. After binding of UAF (upstream activation factor) to an upstream element of the promoter, CF is recruited in a SPT15/TBP-dependent manner to form a preinitiation complex.<ref>PMID:8887672</ref>  [[http://www.uniprot.org/uniprot/RPAB5_YEAST RPAB5_YEAST]] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Common component of RNA polymerases I, II and III which synthesize ribosomal RNA precursors, mRNA precursors and many functional non-coding RNAs, and a small RNAs, such as 5S rRNA and tRNAs, respectively. Pol II is the central component of the basal RNA polymerase II transcription machinery. Pols are composed of mobile elements that move relative to each other. In Pol II, RBP10 is part of the core element with the central large cleft. [[http://www.uniprot.org/uniprot/RPAB1_YEAST RPAB1_YEAST]] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Common component of RNA polymerases I, II and III which synthesize ribosomal RNA precursors, mRNA precursors and many functional non-coding RNAs, and small RNAs, such as 5S rRNA and tRNAs, respectively. Pol II is the central component of the basal RNA polymerase II transcription machinery. Pols are composed of mobile elements that move relative to each other. In Pol II, RPB5 is part of the lower jaw surrounding the central large cleft and thought to grab the incoming DNA template. Seems to be the major component in this process (By similarity).  
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
In eukaryotic cells, RNA polymerase I (Pol I) synthesizes precursor ribosomal RNA (pre-rRNA) that is subsequently processed into mature rRNA. To initiate transcription, Pol I requires the assembly of a multi-subunit pre-initiation complex (PIC) at the ribosomal RNA promoter. In yeast, the minimal PIC includes Pol I, the transcription factor Rrn3, and Core Factor (CF) composed of subunits Rrn6, Rrn7, and Rrn11. Here, we present the cryo-EM structure of the 18-subunit yeast Pol I PIC bound to a transcription scaffold. The cryo-EM map reveals an unexpected arrangement of the DNA and CF subunits relative to Pol I. The upstream DNA is positioned differently than in any previous structures of the Pol II PIC. Furthermore, the TFIIB-related subunit Rrn7 also occupies a different location compared to the Pol II PIC although it uses similar interfaces as TFIIB to contact DNA. Our results show that although general features of eukaryotic transcription initiation are conserved, Pol I and Pol II use them differently in their respective transcription initiation complexes.
 
Structural insights into transcription initiation by yeast RNA polymerase I.,Sadian Y, Tafur L, Kosinski J, Jakobi AJ, Wetzel R, Buczak K, Hagen WJ, Beck M, Sachse C, Muller CW EMBO J. 2017 Sep 15;36(18):2698-2709. doi: 10.15252/embj.201796958. Epub 2017 Jul, 24. PMID:28739580<ref>PMID:28739580</ref>
 
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 5oa1" style="background-color:#fffaf0;"></div>
== References ==
== References ==
<references/>
<references/>

Revision as of 10:45, 6 December 2017

RNA polymerase I pre-initiation complexRNA polymerase I pre-initiation complex

Structural highlights

5oa1 is a 34 chain structure with sequence from Baker's yeast and Saccharomyces cerevisiae s288c. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:
Gene:RRN7, YJL025W, J1273 (Baker's yeast), RRN6, YBL014C, YBL0311, YBL0312 (Baker's yeast), RRN11, YML043C, YM9827.09C (Baker's yeast)
Activity:DNA-directed RNA polymerase, with EC number 2.7.7.6
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

[RPAC2_YEAST] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Common core component of RNA polymerases I and III which synthesize ribosomal RNA precursors and small RNAs, such as 5S rRNA and tRNAs, respectively. [RPA43_YEAST] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Component of RNA polymerase I which synthesizes ribosomal RNA precursors. Through its association with RRN3 is involved in recruitment of Pol I to rDNA promoters. In vitro, the A13-A43 subcomplex binds single-stranded RNA.[1] [2] [RPA2_YEAST] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Second largest core component of RNA polymerase I which synthesizes ribosomal RNA precursors. Proposed to contribute to the polymerase catalytic activity and forms the polymerase active center together with the largest subunit. Pol I is composed of mobile elements and RPA2 is part of the core element with the central large cleft and probably a clamp element that moves to open and close the cleft (By similarity). [RPA1_YEAST] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Largest and catalytic core component of RNA polymerase I which synthesizes ribosomal RNA precursors. Forms the polymerase active center together with the second largest subunit. A single stranded DNA template strand of the promoter is positioned within the central active site cleft of Pol I. A bridging helix emanates from RPA1 and crosses the cleft near the catalytic site and is thought to promote translocation of Pol I by acting as a ratchet that moves the RNA-DNA hybrid through the active site by switching from straight to bent conformations at each step of nucleotide addition (By similarity). [RRN7_YEAST] Component of RNA polymerase I core factor complex (CF) that acts as a SUA7/TFIIB-like factor and plays a key role in multiple steps during transcription initiation such as pre-initiation complex (PIC) assembly and postpolymerase recruitment events in polymerase I (Pol I) transcription. Binds rDNA promoters and plays a role in Pol I recruitment. After binding of UAF (upstream activation factor) to an upstream element of the promoter, CF is recruited in a SPT15/TBP-dependent manner to form a pre-initiation complex.[3] [4] [5] [RPA49_YEAST] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Component of RNA polymerase I which synthesizes ribosomal RNA precursors. A49 is easily dissociated from the rest of pol A (pol I), producing the form A*, which shows impaired transcriptional activity and increased sensitivity to alpha-amanitin. The function of A49 might be linked to the RNase H activity that was found associated with this subunit. [RPAB2_YEAST] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Common component of RNA polymerases I, II and III which synthesize ribosomal RNA precursors, mRNA precursors and many functional non-coding RNAs, and small RNAs, such as 5S rRNA and tRNAs, respectively. Pol II is the central component of the basal RNA polymerase II transcription machinery. Pols are composed of mobile elements that move relative to each other. In Pol II, RPB6 is part of the clamp element and togther with parts of RPB1 and RPB2 forms a pocket to which the RPB4-RPB7 subcomplex binds (By similarity). [RPAC1_YEAST] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Common component of RNA polymerases I and III which synthesize ribosomal RNA precursors and small RNAs, such as 5S rRNA and tRNAs, respectively. RPAC1 is part of the Pol core element with the central large cleft and probably a clamp element that moves to open and close the cleft (By similarity). [RPA12_YEAST] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Component of RNA polymerase I which synthesizes ribosomal RNA precursors. Involved in transcriptional termination. Involved in recruitment of RPA49 to Pol I.[6] [RPAB4_YEAST] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Common component of RNA polymerases I, II and III which synthesize ribosomal RNA precursors, mRNA precursors and many functional non-coding RNAs, and a small RNAs, such as 5S rRNA and tRNAs, respectively. Pols are composed of mobile elements that move relative to each other. In Pol II, the core element with the central large cleft comprises RPB3, RBP10, RPB11, RPB12 and regions of RPB1 and RPB2 forming the active center. [RRN11_YEAST] Acts as component of the core factor (CF) complex which is essential for the initiation of rDNA transcription by RNA polymerase I. After binding of UAF (upstream activation factor) to an upstream element of the promoter, CF is recruited in a SPT15/TBP-dependent manner to form a preinitiation complex.[7] [RPA34_YEAST] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Component of RNA polymerase I which synthesizes ribosomal RNA precursors.[8] [RRN3_YEAST] Required for efficient transcription initiation by RNA polymerase I. Interacts with Pol I in the absence of template DNA and stimulates recruitment of Pol I, but does not remain as part of stable preinitiation complex. [RPAB3_YEAST] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Common component of RNA polymerases I, II and III which synthesize ribosomal RNA precursors, mRNA precursors and many functional non-coding RNAs, and small RNAs, such as 5S rRNA and tRNAs, respectively. [RPA14_YEAST] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Component of RNA polymerase I which synthesizes ribosomal RNA precursors. A14 seems to play a role in the stability of subunits ABC23 and A43. In vitro, the A14-A43 subcomplex binds single-stranded RNA.[9] [RRN6_YEAST] Acts as component of the core factor (CF) complex which is essential for the initiation of rDNA transcription by RNA polymerase I. After binding of UAF (upstream activation factor) to an upstream element of the promoter, CF is recruited in a SPT15/TBP-dependent manner to form a preinitiation complex.[10] [RPAB5_YEAST] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Common component of RNA polymerases I, II and III which synthesize ribosomal RNA precursors, mRNA precursors and many functional non-coding RNAs, and a small RNAs, such as 5S rRNA and tRNAs, respectively. Pol II is the central component of the basal RNA polymerase II transcription machinery. Pols are composed of mobile elements that move relative to each other. In Pol II, RBP10 is part of the core element with the central large cleft. [RPAB1_YEAST] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Common component of RNA polymerases I, II and III which synthesize ribosomal RNA precursors, mRNA precursors and many functional non-coding RNAs, and small RNAs, such as 5S rRNA and tRNAs, respectively. Pol II is the central component of the basal RNA polymerase II transcription machinery. Pols are composed of mobile elements that move relative to each other. In Pol II, RPB5 is part of the lower jaw surrounding the central large cleft and thought to grab the incoming DNA template. Seems to be the major component in this process (By similarity).

Publication Abstract from PubMed

In eukaryotic cells, RNA polymerase I (Pol I) synthesizes precursor ribosomal RNA (pre-rRNA) that is subsequently processed into mature rRNA. To initiate transcription, Pol I requires the assembly of a multi-subunit pre-initiation complex (PIC) at the ribosomal RNA promoter. In yeast, the minimal PIC includes Pol I, the transcription factor Rrn3, and Core Factor (CF) composed of subunits Rrn6, Rrn7, and Rrn11. Here, we present the cryo-EM structure of the 18-subunit yeast Pol I PIC bound to a transcription scaffold. The cryo-EM map reveals an unexpected arrangement of the DNA and CF subunits relative to Pol I. The upstream DNA is positioned differently than in any previous structures of the Pol II PIC. Furthermore, the TFIIB-related subunit Rrn7 also occupies a different location compared to the Pol II PIC although it uses similar interfaces as TFIIB to contact DNA. Our results show that although general features of eukaryotic transcription initiation are conserved, Pol I and Pol II use them differently in their respective transcription initiation complexes.

Structural insights into transcription initiation by yeast RNA polymerase I.,Sadian Y, Tafur L, Kosinski J, Jakobi AJ, Wetzel R, Buczak K, Hagen WJ, Beck M, Sachse C, Muller CW EMBO J. 2017 Sep 15;36(18):2698-2709. doi: 10.15252/embj.201796958. Epub 2017 Jul, 24. PMID:28739580[11]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Peyroche G, Milkereit P, Bischler N, Tschochner H, Schultz P, Sentenac A, Carles C, Riva M. The recruitment of RNA polymerase I on rDNA is mediated by the interaction of the A43 subunit with Rrn3. EMBO J. 2000 Oct 16;19(20):5473-82. PMID:11032814 doi:http://dx.doi.org/10.1093/emboj/19.20.5473
  2. Meka H, Daoust G, Arnvig KB, Werner F, Brick P, Onesti S. Structural and functional homology between the RNAP(I) subunits A14/A43 and the archaeal RNAP subunits E/F. Nucleic Acids Res. 2003 Aug 1;31(15):4391-400. PMID:12888498
  3. Knutson BA, Hahn S. Yeast Rrn7 and human TAF1B are TFIIB-related RNA polymerase I general transcription factors. Science. 2011 Sep 16;333(6049):1637-40. doi: 10.1126/science.1207699. PMID:21921198 doi:http://dx.doi.org/10.1126/science.1207699
  4. Blattner C, Jennebach S, Herzog F, Mayer A, Cheung AC, Witte G, Lorenzen K, Hopfner KP, Heck AJ, Aebersold R, Cramer P. Molecular basis of Rrn3-regulated RNA polymerase I initiation and cell growth. Genes Dev. 2011 Sep 22. PMID:21940764 doi:10.1101/gad.17363311
  5. Lin CW, Moorefield B, Payne J, Aprikian P, Mitomo K, Reeder RH. A novel 66-kilodalton protein complexes with Rrn6, Rrn7, and TATA-binding protein to promote polymerase I transcription initiation in Saccharomyces cerevisiae. Mol Cell Biol. 1996 Nov;16(11):6436-43. PMID:8887672
  6. Prescott EM, Osheim YN, Jones HS, Alen CM, Roan JG, Reeder RH, Beyer AL, Proudfoot NJ. Transcriptional termination by RNA polymerase I requires the small subunit Rpa12p. Proc Natl Acad Sci U S A. 2004 Apr 20;101(16):6068-73. Epub 2004 Apr 8. PMID:15073335 doi:http://dx.doi.org/10.1073/pnas.0401393101
  7. Lin CW, Moorefield B, Payne J, Aprikian P, Mitomo K, Reeder RH. A novel 66-kilodalton protein complexes with Rrn6, Rrn7, and TATA-binding protein to promote polymerase I transcription initiation in Saccharomyces cerevisiae. Mol Cell Biol. 1996 Nov;16(11):6436-43. PMID:8887672
  8. Gadal O, Mariotte-Labarre S, Chedin S, Quemeneur E, Carles C, Sentenac A, Thuriaux P. A34.5, a nonessential component of yeast RNA polymerase I, cooperates with subunit A14 and DNA topoisomerase I to produce a functional rRNA synthesis machine. Mol Cell Biol. 1997 Apr;17(4):1787-95. PMID:9121426
  9. Meka H, Daoust G, Arnvig KB, Werner F, Brick P, Onesti S. Structural and functional homology between the RNAP(I) subunits A14/A43 and the archaeal RNAP subunits E/F. Nucleic Acids Res. 2003 Aug 1;31(15):4391-400. PMID:12888498
  10. Lin CW, Moorefield B, Payne J, Aprikian P, Mitomo K, Reeder RH. A novel 66-kilodalton protein complexes with Rrn6, Rrn7, and TATA-binding protein to promote polymerase I transcription initiation in Saccharomyces cerevisiae. Mol Cell Biol. 1996 Nov;16(11):6436-43. PMID:8887672
  11. Sadian Y, Tafur L, Kosinski J, Jakobi AJ, Wetzel R, Buczak K, Hagen WJ, Beck M, Sachse C, Muller CW. Structural insights into transcription initiation by yeast RNA polymerase I. EMBO J. 2017 Sep 15;36(18):2698-2709. doi: 10.15252/embj.201796958. Epub 2017 Jul, 24. PMID:28739580 doi:http://dx.doi.org/10.15252/embj.201796958

5oa1, resolution 4.40Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA