1n6a: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==Structure of SET7/9== | ==Structure of SET7/9== | ||
<StructureSection load='1n6a' size='340' side='right' caption='[[1n6a]], [[Resolution|resolution]] 1.70Å' scene=''> | <StructureSection load='1n6a' size='340' side='right' caption='[[1n6a]], [[Resolution|resolution]] 1.70Å' scene=''> | ||
Line 6: | Line 7: | ||
<tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene></td></tr> | <tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene></td></tr> | ||
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1n6c|1n6c]]</td></tr> | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1n6c|1n6c]]</td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1n6a FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1n6a OCA], [http://pdbe.org/1n6a PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1n6a RCSB], [http://www.ebi.ac.uk/pdbsum/1n6a PDBsum]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1n6a FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1n6a OCA], [http://pdbe.org/1n6a PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1n6a RCSB], [http://www.ebi.ac.uk/pdbsum/1n6a PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=1n6a ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
Line 18: | Line 19: | ||
<text>to colour the structure by Evolutionary Conservation</text> | <text>to colour the structure by Evolutionary Conservation</text> | ||
</jmolCheckbox> | </jmolCheckbox> | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1n6a ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
Line 29: | Line 30: | ||
</div> | </div> | ||
<div class="pdbe-citations 1n6a" style="background-color:#fffaf0;"></div> | <div class="pdbe-citations 1n6a" style="background-color:#fffaf0;"></div> | ||
== References == | == References == | ||
<references/> | <references/> |
Revision as of 13:28, 25 October 2017
Structure of SET7/9Structure of SET7/9
Structural highlights
Function[SETD7_HUMAN] Histone methyltransferase that specifically monomethylates 'Lys-4' of histone H3. H3 'Lys-4' methylation represents a specific tag for epigenetic transcriptional activation. Plays a central role in the transcriptional activation of genes such as collagenase or insulin. Recruited by IPF1/PDX-1 to the insulin promoter, leading to activate transcription. Has also methyltransferase activity toward non-histone proteins such as p53/TP53, TAF10, and possibly TAF7 by recognizing and binding the [KR]-[STA]-K in substrate proteins. Monomethylates 'Lys-189' of TAF10, leading to increase the affinity of TAF10 for RNA polymerase II. Monomethylates 'Lys-372' of p53/TP53, stabilizing p53/TP53 and increasing p53/TP53-mediated transcriptional activation.[1] [2] [3] [4] [5] [6] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe methylation of lysine residues of histones plays a pivotal role in the regulation of chromatin structure and gene expression. Here, we report two crystal structures of SET7/9, a histone methyltransferase (HMTase) that transfers methyl groups to Lys4 of histone H3, in complex with S-adenosyl-L-methionine (AdoMet) determined at 1.7 and 2.3 A resolution. The structures reveal an active site consisting of: (i) a binding pocket between the SET domain and a c-SET helix where an AdoMet molecule in an unusual conformation binds; (ii) a narrow substrate-specific channel that only unmethylated lysine residues can access; and (iii) a catalytic tyrosine residue. The methyl group of AdoMet is directed to the narrow channel where a substrate lysine enters from the opposite side. We demonstrate that SET7/9 can transfer two but not three methyl groups to unmodified Lys4 of H3 without substrate dissociation. The unusual features of the SET domain-containing HMTase discriminate between the un- and methylated lysine substrate, and the methylation sites for the histone H3 tail. Mechanism of histone lysine methyl transfer revealed by the structure of SET7/9-AdoMet.,Kwon T, Chang JH, Kwak E, Lee CW, Joachimiak A, Kim YC, Lee J, Cho Y EMBO J. 2003 Jan 15;22(2):292-303. PMID:12514135[7] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|