1mns: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
==ON THE ROLE OF LYSINE 166 IN THE MECHANISM OF MANDELATE RACEMASE FROM PSEUDOMONAS PUTIDA: MECHANISTIC AND CRYSTALLOGRAPHIC EVIDENCE FOR STEREOSPECIFIC ALKYLATION BY (R)-ALPHA-PHENYLGLYCIDATE==
==ON THE ROLE OF LYSINE 166 IN THE MECHANISM OF MANDELATE RACEMASE FROM PSEUDOMONAS PUTIDA: MECHANISTIC AND CRYSTALLOGRAPHIC EVIDENCE FOR STEREOSPECIFIC ALKYLATION BY (R)-ALPHA-PHENYLGLYCIDATE==
<StructureSection load='1mns' size='340' side='right' caption='[[1mns]], [[Resolution|resolution]] 2.00&Aring;' scene=''>
<StructureSection load='1mns' size='340' side='right' caption='[[1mns]], [[Resolution|resolution]] 2.00&Aring;' scene=''>
Line 5: Line 6:
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=APG:ATROLACTIC+ACID+(2-PHENYL-LACTIC+ACID)'>APG</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=APG:ATROLACTIC+ACID+(2-PHENYL-LACTIC+ACID)'>APG</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Mandelate_racemase Mandelate racemase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=5.1.2.2 5.1.2.2] </span></td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Mandelate_racemase Mandelate racemase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=5.1.2.2 5.1.2.2] </span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1mns FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1mns OCA], [http://pdbe.org/1mns PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1mns RCSB], [http://www.ebi.ac.uk/pdbsum/1mns PDBsum]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1mns FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1mns OCA], [http://pdbe.org/1mns PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1mns RCSB], [http://www.ebi.ac.uk/pdbsum/1mns PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=1mns ProSAT]</span></td></tr>
</table>
</table>
== Evolutionary Conservation ==
== Evolutionary Conservation ==
Line 15: Line 16:
     <text>to colour the structure by Evolutionary Conservation</text>
     <text>to colour the structure by Evolutionary Conservation</text>
   </jmolCheckbox>
   </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1mns ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
<div style="background-color:#fffaf0;">
Line 26: Line 27:
</div>
</div>
<div class="pdbe-citations 1mns" style="background-color:#fffaf0;"></div>
<div class="pdbe-citations 1mns" style="background-color:#fffaf0;"></div>
==See Also==
*[[Mandelate racemase|Mandelate racemase]]
== References ==
== References ==
<references/>
<references/>

Revision as of 13:07, 25 October 2017

ON THE ROLE OF LYSINE 166 IN THE MECHANISM OF MANDELATE RACEMASE FROM PSEUDOMONAS PUTIDA: MECHANISTIC AND CRYSTALLOGRAPHIC EVIDENCE FOR STEREOSPECIFIC ALKYLATION BY (R)-ALPHA-PHENYLGLYCIDATEON THE ROLE OF LYSINE 166 IN THE MECHANISM OF MANDELATE RACEMASE FROM PSEUDOMONAS PUTIDA: MECHANISTIC AND CRYSTALLOGRAPHIC EVIDENCE FOR STEREOSPECIFIC ALKYLATION BY (R)-ALPHA-PHENYLGLYCIDATE

Structural highlights

1mns is a 1 chain structure with sequence from "bacillus_fluorescens_putidus"_flugge_1886 "bacillus fluorescens putidus" flugge 1886. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:,
Activity:Mandelate racemase, with EC number 5.1.2.2
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

The mechanism of irreversible inactivation of mandelate racemase (MR) from Pseudomonas putida by alpha-phenylglycidate (alpha PGA) has been investigated stereochemically and crystallographically. The (R) and (S) enantiomers of alpha PGA were synthesized in high enantiomeric excess (81% ee and 83% ee, respectively) using Sharpless epoxidation chemistry. (R)-alpha PGA was determined to be a stereospecific and stoichiometric irreversible inactivator of MR. (S)-alpha PGA does not inactivate MR and appears to bind noncovalently to the active site of MR with less affinity than that of (R)-alpha PGA. The X-ray crystal structure (2.0-A resolution) of MR inactivated by (R)-alpha PGA revealed the presence of a covalent adduct formed by nucleophilic attack of the epsilon-amino group of Lys 166 on the distal carbon on the epoxide ring of (R)-alpha PGA. The proximity of the alpha-proton of (S)-mandelate to Lys 166 [configurationally equivalent to (R)-alpha PGA] was corroborated by the crystal structure (2.1-A resolution) of MR complexed with the substrate analog/competitive inhibitor, (S)-atrolactate [(S)-alpha-methylmandelate]. These results support the proposal that Lys 166 is the polyvalent acid/base responsible for proton transfers on the (S) face of mandelate. In addition, the high-resolution structures also provide insight into the probable interactions of mandelate with the essential Mg2+ and functional groups in the active site.

The role of lysine 166 in the mechanism of mandelate racemase from Pseudomonas putida: mechanistic and crystallographic evidence for stereospecific alkylation by (R)-alpha-phenylglycidate.,Landro JA, Gerlt JA, Kozarich JW, Koo CW, Shah VJ, Kenyon GL, Neidhart DJ, Fujita S, Petsko GA Biochemistry. 1994 Jan 25;33(3):635-43. PMID:8292591[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Landro JA, Gerlt JA, Kozarich JW, Koo CW, Shah VJ, Kenyon GL, Neidhart DJ, Fujita S, Petsko GA. The role of lysine 166 in the mechanism of mandelate racemase from Pseudomonas putida: mechanistic and crystallographic evidence for stereospecific alkylation by (R)-alpha-phenylglycidate. Biochemistry. 1994 Jan 25;33(3):635-43. PMID:8292591

1mns, resolution 2.00Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA