2gq0: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==Crystal Structure of the Middle Domain of HtpG, the E. coli Hsp90== | ==Crystal Structure of the Middle Domain of HtpG, the E. coli Hsp90== | ||
<StructureSection load='2gq0' size='340' side='right' caption='[[2gq0]], [[Resolution|resolution]] 1.90Å' scene=''> | <StructureSection load='2gq0' size='340' side='right' caption='[[2gq0]], [[Resolution|resolution]] 1.90Å' scene=''> | ||
Line 6: | Line 7: | ||
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">htpG ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=562 "Bacillus coli" Migula 1895])</td></tr> | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">htpG ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=562 "Bacillus coli" Migula 1895])</td></tr> | ||
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Non-chaperonin_molecular_chaperone_ATPase Non-chaperonin molecular chaperone ATPase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.6.4.10 3.6.4.10] </span></td></tr> | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Non-chaperonin_molecular_chaperone_ATPase Non-chaperonin molecular chaperone ATPase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.6.4.10 3.6.4.10] </span></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2gq0 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2gq0 OCA], [http://pdbe.org/2gq0 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=2gq0 RCSB], [http://www.ebi.ac.uk/pdbsum/2gq0 PDBsum]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2gq0 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2gq0 OCA], [http://pdbe.org/2gq0 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=2gq0 RCSB], [http://www.ebi.ac.uk/pdbsum/2gq0 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=2gq0 ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
Line 29: | Line 30: | ||
</div> | </div> | ||
<div class="pdbe-citations 2gq0" style="background-color:#fffaf0;"></div> | <div class="pdbe-citations 2gq0" style="background-color:#fffaf0;"></div> | ||
== References == | == References == | ||
<references/> | <references/> |
Revision as of 10:58, 18 October 2017
Crystal Structure of the Middle Domain of HtpG, the E. coli Hsp90Crystal Structure of the Middle Domain of HtpG, the E. coli Hsp90
Structural highlights
Function[HTPG_ECOLI] Molecular chaperone. Has ATPase activity.[HAMAP-Rule:MF_00505] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedIn eukaryotes, the ubiquitous and abundant members of the 90 kilodalton heat-shock protein (hsp90) chaperone family facilitate the folding and conformational changes of a broad array of proteins important in cell signaling, proliferation, and survival. Here we describe the effects of nucleotides on the structure of full-length HtpG, the Escherichia coli hsp90 ortholog. By electron microscopy, the nucleotide-free, AMPPNP bound, and ADP bound states of HtpG adopt completely distinct conformations. Structural characterization of nucleotide-free and ADP bound HtpG was extended to higher resolution by X-ray crystallography. In the absence of nucleotide, HtpG exhibits an "open" conformation in which the three domains of each monomer present hydrophobic elements into the large cleft formed by the dimer. By contrast, ADP binding drives dramatic conformational changes that allow these hydrophobic elements to converge and shield each other from solvent, suggesting a mechanism by which nucleotides could control client protein binding and release. Structural Analysis of E. coli hsp90 reveals dramatic nucleotide-dependent conformational rearrangements.,Shiau AK, Harris SF, Southworth DR, Agard DA Cell. 2006 Oct 20;127(2):329-40. PMID:17055434[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|