5n2q: Difference between revisions
No edit summary |
No edit summary |
||
Line 10: | Line 10: | ||
== Function == | == Function == | ||
[[http://www.uniprot.org/uniprot/PRE_STRAG PRE_STRAG]] The interaction of the RSA site and the PRE protein may not only serves a function in plasmid maintenance, but may also contributes to the distribution of small antibiotic resistance plasmids among Gram-positive bacteria. | [[http://www.uniprot.org/uniprot/PRE_STRAG PRE_STRAG]] The interaction of the RSA site and the PRE protein may not only serves a function in plasmid maintenance, but may also contributes to the distribution of small antibiotic resistance plasmids among Gram-positive bacteria. | ||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Relaxases are metal-dependent nucleases that break and join DNA for the initiation and completion of conjugative bacterial gene transfer. Conjugation is the main process through which antibiotic resistance spreads among bacteria, with multidrug-resistant staphylococci and streptococci infections posing major threats to human health. The MOBV family of relaxases accounts for approximately 85% of all relaxases found in Staphylococcus aureus isolates. Here, we present six structures of the MOBV relaxase MobM from the promiscuous plasmid pMV158 in complex with several origin of transfer DNA fragments. A combined structural, biochemical, and computational approach reveals that MobM follows a previously uncharacterized histidine/metal-dependent DNA processing mechanism, which involves the formation of a covalent phosphoramidate histidine-DNA adduct for cell-to-cell transfer. We discuss how the chemical features of the high-energy phosphorus-nitrogen bond shape the dominant position of MOBV histidine relaxases among small promiscuous plasmids and their preference toward Gram-positive bacteria. | |||
Structural basis of a histidine-DNA nicking/joining mechanism for gene transfer and promiscuous spread of antibiotic resistance.,Pluta R, Boer DR, Lorenzo-Diaz F, Russi S, Gomez H, Fernandez-Lopez C, Perez-Luque R, Orozco M, Espinosa M, Coll M Proc Natl Acad Sci U S A. 2017 Aug 8;114(32):E6526-E6535. doi:, 10.1073/pnas.1702971114. Epub 2017 Jul 24. PMID:28739894<ref>PMID:28739894</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 5n2q" style="background-color:#fffaf0;"></div> | |||
== References == | |||
<references/> | |||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> |
Revision as of 12:21, 27 September 2017
MobM Relaxase Domain (MOBV; Mob_Pre) bound to 26nt pMV158 oriT DNAMobM Relaxase Domain (MOBV; Mob_Pre) bound to 26nt pMV158 oriT DNA
Structural highlights
Function[PRE_STRAG] The interaction of the RSA site and the PRE protein may not only serves a function in plasmid maintenance, but may also contributes to the distribution of small antibiotic resistance plasmids among Gram-positive bacteria. Publication Abstract from PubMedRelaxases are metal-dependent nucleases that break and join DNA for the initiation and completion of conjugative bacterial gene transfer. Conjugation is the main process through which antibiotic resistance spreads among bacteria, with multidrug-resistant staphylococci and streptococci infections posing major threats to human health. The MOBV family of relaxases accounts for approximately 85% of all relaxases found in Staphylococcus aureus isolates. Here, we present six structures of the MOBV relaxase MobM from the promiscuous plasmid pMV158 in complex with several origin of transfer DNA fragments. A combined structural, biochemical, and computational approach reveals that MobM follows a previously uncharacterized histidine/metal-dependent DNA processing mechanism, which involves the formation of a covalent phosphoramidate histidine-DNA adduct for cell-to-cell transfer. We discuss how the chemical features of the high-energy phosphorus-nitrogen bond shape the dominant position of MOBV histidine relaxases among small promiscuous plasmids and their preference toward Gram-positive bacteria. Structural basis of a histidine-DNA nicking/joining mechanism for gene transfer and promiscuous spread of antibiotic resistance.,Pluta R, Boer DR, Lorenzo-Diaz F, Russi S, Gomez H, Fernandez-Lopez C, Perez-Luque R, Orozco M, Espinosa M, Coll M Proc Natl Acad Sci U S A. 2017 Aug 8;114(32):E6526-E6535. doi:, 10.1073/pnas.1702971114. Epub 2017 Jul 24. PMID:28739894[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|