1dje: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==CRYSTAL STRUCTURE OF THE PLP-BOUND FORM OF 8-AMINO-7-OXONANOATE SYNTHASE== | ==CRYSTAL STRUCTURE OF THE PLP-BOUND FORM OF 8-AMINO-7-OXONANOATE SYNTHASE== | ||
<StructureSection load='1dje' size='340' side='right' caption='[[1dje]], [[Resolution|resolution]] 1.71Å' scene=''> | <StructureSection load='1dje' size='340' side='right' caption='[[1dje]], [[Resolution|resolution]] 1.71Å' scene=''> | ||
Line 6: | Line 7: | ||
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1bs0|1bs0]], [[1dj9|1dj9]]</td></tr> | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1bs0|1bs0]], [[1dj9|1dj9]]</td></tr> | ||
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Transferase Transferase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.3.1.47 2.3.1.47] </span></td></tr> | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Transferase Transferase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.3.1.47 2.3.1.47] </span></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1dje FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1dje OCA], [http://pdbe.org/1dje PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1dje RCSB], [http://www.ebi.ac.uk/pdbsum/1dje PDBsum]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1dje FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1dje OCA], [http://pdbe.org/1dje PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1dje RCSB], [http://www.ebi.ac.uk/pdbsum/1dje PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=1dje ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
Line 18: | Line 19: | ||
<text>to colour the structure by Evolutionary Conservation</text> | <text>to colour the structure by Evolutionary Conservation</text> | ||
</jmolCheckbox> | </jmolCheckbox> | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1dje ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> |
Revision as of 07:09, 30 August 2017
CRYSTAL STRUCTURE OF THE PLP-BOUND FORM OF 8-AMINO-7-OXONANOATE SYNTHASECRYSTAL STRUCTURE OF THE PLP-BOUND FORM OF 8-AMINO-7-OXONANOATE SYNTHASE
Structural highlights
Function[BIOF_ECOLI] Catalyzes the decarboxylative condensation of pimeloyl-[acyl-carrier protein] and L-alanine to produce 8-amino-7-oxononanoate (AON), [acyl-carrier protein], and carbon dioxide. Can also use pimeloyl-CoA instead of pimeloyl-ACP as substrate, but it is believed that pimeloyl-ACP rather than pimeloyl-CoA is the physiological substrate of BioF.[1] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMed8-Amino-7-oxononanoate synthase (also known as 7-keto-8-aminopelargonate synthase, EC 2.3.1.47) is a pyridoxal 5'-phosphate-dependent enzyme which catalyzes the decarboxylative condensation of L-alanine with pimeloyl-CoA in a stereospecific manner to form 8(S)-amino-7-oxononanoate. This is the first committed step in biotin biosynthesis. The mechanism of Escherichia coli AONS has been investigated by spectroscopic, kinetic, and crystallographic techniques. The X-ray structure of the holoenzyme has been refined at a resolution of 1.7 A (R = 18.6%, R(free) = 21. 2%) and shows that the plane of the imine bond of the internal aldimine deviates from the pyridine plane. The structure of the enzyme-product external aldimine complex has been refined at a resolution of 2.0 A (R = 21.2%, R(free) = 27.8%) and shows a rotation of the pyridine ring with respect to that in the internal aldimine, together with a significant conformational change of the C-terminal domain and subtle rearrangement of the active site hydrogen bonding. The first step in the reaction, L-alanine external aldimine formation, is rapid (k(1) = 2 x 10(4) M(-)(1) s(-)(1)). Formation of an external aldimine with D-alanine, which is not a substrate, is significantly slower (k(1) = 125 M(-)(1) s(-)(1)). Binding of D-alanine to AONS is enhanced approximately 2-fold in the presence of pimeloyl-CoA. Significant substrate quinonoid formation only occurs upon addition of pimeloyl-CoA to the preformed L-alanine external aldimine complex and is preceded by a distinct lag phase ( approximately 30 ms) which suggests that binding of the pimeloyl-CoA causes a conformational transition of the enzyme external aldimine complex. This transition, which is inferred by modeling to require a rotation around the Calpha-N bond of the external aldimine complex, promotes abstraction of the Calpha proton by Lys236. These results have been combined to form a detailed mechanistic pathway for AONS catalysis which may be applied to the other members of the alpha-oxoamine synthase subfamily. Mechanism of 8-amino-7-oxononanoate synthase: spectroscopic, kinetic, and crystallographic studies.,Webster SP, Alexeev D, Campopiano DJ, Watt RM, Alexeeva M, Sawyer L, Baxter RL Biochemistry. 2000 Jan 25;39(3):516-28. PMID:10642176[2] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|