5inh: Difference between revisions
No edit summary |
No edit summary |
||
Line 12: | Line 12: | ||
== Function == | == Function == | ||
[[http://www.uniprot.org/uniprot/ENPP2_MOUSE ENPP2_MOUSE]] Hydrolyzes lysophospholipids to produce lysophosphatidic acid (LPA) in extracellular fluids. Major substrate is lysophosphatidylcholine. Also can act on sphingosylphosphphorylcholine producing sphingosine-1-phosphate, a modulator of cell motility. Can hydrolyze, in vitro, bis-pNPP, to some extent pNP-TMP, and barely ATP. Involved in several motility-related processes such as angiogenesis and neurite outgrowth. Acts as an angiogenic factor by stimulating migration of smooth muscle cells and microtubule formation. Stimulates migration of melanoma cells, probably via a pertussis toxin-sensitive G protein. May have a role in induction of parturition. Possible involvement in cell proliferation and adipose tissue development. Tumor cell motility-stimulating factor.<ref>PMID:15700135</ref> <ref>PMID:17208043</ref> <ref>PMID:21240269</ref> | [[http://www.uniprot.org/uniprot/ENPP2_MOUSE ENPP2_MOUSE]] Hydrolyzes lysophospholipids to produce lysophosphatidic acid (LPA) in extracellular fluids. Major substrate is lysophosphatidylcholine. Also can act on sphingosylphosphphorylcholine producing sphingosine-1-phosphate, a modulator of cell motility. Can hydrolyze, in vitro, bis-pNPP, to some extent pNP-TMP, and barely ATP. Involved in several motility-related processes such as angiogenesis and neurite outgrowth. Acts as an angiogenic factor by stimulating migration of smooth muscle cells and microtubule formation. Stimulates migration of melanoma cells, probably via a pertussis toxin-sensitive G protein. May have a role in induction of parturition. Possible involvement in cell proliferation and adipose tissue development. Tumor cell motility-stimulating factor.<ref>PMID:15700135</ref> <ref>PMID:17208043</ref> <ref>PMID:21240269</ref> | ||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Serine hydrolases are susceptible to potent reversible inhibition by boronic acids. Large collections of chemically diverse boronic acid fragments are commercially available because of their utility in coupling chemistry. We repurposed the approximately 650 boronic acid reagents in our collection as a directed fragment library targeting serine hydrolases and related enzymes. Highly efficient hits (LE > 0.6) often result. The utility of the approach is illustrated with the results against autotaxin, a phospholipase implicated in cardiovascular disease. | |||
Repurposing Suzuki Coupling Reagents as a Directed Fragment Library Targeting Serine Hydrolases and Related Enzymes.,Lanier M, Cole DC, Istratiy Y, Klein MG, Schwartz PA, Tjhen R, Jennings A, Hixon MS J Med Chem. 2017 Jun 22;60(12):5209-5215. doi: 10.1021/acs.jmedchem.6b01224. Epub, 2017 Jun 9. PMID:28564542<ref>PMID:28564542</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 5inh" style="background-color:#fffaf0;"></div> | |||
== References == | == References == | ||
<references/> | <references/> |