Sandbox Reserved 1069: Difference between revisions
No edit summary |
Kyle Colston (talk | contribs) No edit summary |
||
Line 51: | Line 51: | ||
It is believed that the energy for TMD conformation change comes from energy of binding each substrate. Changing to the outward from the inward-facing conformation causes a shift in <scene name='69/694233/Transmembrane_helix_5/2'>TM5</scene> which disrupts the tetrahedral geometry of active site A. This in turn decreases binding affinity site A has for Zn<sup>2+</sup> making export to the periplasm possible. After Zn<sup>2+</sup> is exported and site A is either empty or bound to H<sup>+</sup>, the protein's conformation changes to the favored inward-facing conformation. | It is believed that the energy for TMD conformation change comes from energy of binding each substrate. Changing to the outward from the inward-facing conformation causes a shift in <scene name='69/694233/Transmembrane_helix_5/2'>TM5</scene> which disrupts the tetrahedral geometry of active site A. This in turn decreases binding affinity site A has for Zn<sup>2+</sup> making export to the periplasm possible. After Zn<sup>2+</sup> is exported and site A is either empty or bound to H<sup>+</sup>, the protein's conformation changes to the favored inward-facing conformation. | ||
[[Image:FRET.png|200px|left|thumb| Labeled Cysteine resides measured with FRET showed the distance of the CTD of each monomer to be 24.0Å when saturated with Zn<sup>2+</sup>.]] | [[Image:FRET.png|200px|left|thumb| Labeled Cysteine resides measured with FRET showed the distance of the CTD of each monomer to be 24.0Å when saturated with Zn<sup>2+</sup>. Decrease in the Cys-Cys distance is indicative that both CTDs of YiiP were brought closer together.]] | ||
In contrast the main purpose of conformation change in the CTD is to stabilize the YiiP dimer and to act as a Zn<sup>2+</sup> sensor. | In contrast the main purpose of conformation change in the CTD is to stabilize the YiiP dimer and to act as a Zn<sup>2+</sup> sensor. | ||
This is possible because of the flexible loop that links the TMD and the CTD. This loop harbors the <scene name='75/756372/Bestsaltbridgetransparent/1'>salt bridge</scene> which serves as a hinge that allows movement of the CTD. Using [https://en.wikipedia.org/wiki/F%C3%B6rster_resonance_energy_transfer FRET] to measure the distance between the CTD of each monomer fluorescence quenching was observed as the concentration Zn<sup>2+</sup> increased, which supports that idea that Zn<sup>2+</sup> induces a stabilizing conformation change in the CTD.<ref>PMID:19749753</ref> CTD of both monomers were measured to be closer together when saturated with Zn<sup>2+</sup>. | This is possible because of the flexible loop that links the TMD and the CTD. This loop harbors the <scene name='75/756372/Bestsaltbridgetransparent/1'>salt bridge</scene> which serves as a hinge that allows movement of the CTD. Using [https://en.wikipedia.org/wiki/F%C3%B6rster_resonance_energy_transfer FRET] to measure the distance between the CTD of each monomer fluorescence quenching was observed as the concentration Zn<sup>2+</sup> increased, which supports that idea that Zn<sup>2+</sup> induces a stabilizing conformation change in the CTD.<ref>PMID:19749753</ref> CTD of both monomers were measured to be closer together when saturated with Zn<sup>2+</sup>. |