Sandbox Reserved 1069: Difference between revisions
No edit summary |
Kyle Colston (talk | contribs) No edit summary |
||
Line 44: | Line 44: | ||
===Zn<sup>2+</sup> Induced Conformation Change=== | ===Zn<sup>2+</sup> Induced Conformation Change=== | ||
Zinc induced conformation changes in the TMD and CTD leads to the major <scene name='69/694236/Outward-facinggreen/1'>outward-facing</scene> and <scene name='69/694236/Inward-facinggreen/1'>inward-facing conformations</scene>. [[Image:InwardVsOutward.png|300px|right|thumb| | Zinc induced conformation changes in the TMD and CTD leads to the major <scene name='69/694236/Outward-facinggreen/1'>outward-facing</scene> and <scene name='69/694236/Inward-facinggreen/1'>inward-facing conformations</scene>. [[Image:InwardVsOutward.png|300px|right|thumb| Side by side comparison of one monomer for the the outward-facing conformation of 3H90 and the inward-facing conformation of 3J1Z. TM1, TM2, TM4, and TM5 (yellow) pivot around TM3 and TM6 (green). The helices of the other half of the homodimer (blue) function identically. | ||
]] | |||
The conformation change directly involved with Zn<sup>2+</sup>/H<sup>+</sup> antiport occurs in the TMD as helix pivoting controls what environment site A is available to. Conformation change occurs when the transmembrane helix pairs TM1, TM2, TM4, and TM5 pivot around cation binding site A.<ref>PMID:23341604</ref> | The conformation change directly involved with Zn<sup>2+</sup>/H<sup>+</sup> antiport occurs in the TMD as helix pivoting controls what environment site A is available to. Conformation change occurs when the transmembrane helix pairs TM1, TM2, TM4, and TM5 pivot around cation binding site A.<ref>PMID:23341604</ref> | ||