Sandbox Reserved 1069: Difference between revisions

No edit summary
No edit summary
Line 26: Line 26:
[[Image:Binding_site_A.fw.png|200px|left|thumb|Binding Site A showing TM2 domain (left) and TM5 domain (right). The Asp45 and Asp49 as well as the His153 and Asp157 are the coordination residues in the acitve site]]
[[Image:Binding_site_A.fw.png|200px|left|thumb|Binding Site A showing TM2 domain (left) and TM5 domain (right). The Asp45 and Asp49 as well as the His153 and Asp157 are the coordination residues in the acitve site]]


It is important to note that the structure of this binding site is rigid because of the coordination of the Zn<sup>2+</sup> between the four residues. This rigidity is indicative that any slight shift on either of the helices will cause a drastic readjustment of the coordination of Zn<sup>2+</sup>. In addition, there are no outer-shell constraints to hold the residues in place, which means that with a readjustment of the molecule, there is no energy being expended to bind or release another Zn<sup>2+</sup> molecule. Therefore, the Zn<sup>2+</sup> is able to rapidly release and a new Zn<sup>2+</sup> can bind again with a simple reorientation or shift of the molecule. This rapid on off bind and release mechanism is the regulator of homeostatic levels of Zn<sup>2+</sup> in the cell. This regulation is significantly faster than other Zn<sup>2+</sup> exchange rate proteins by several orders of magnitude.
It is important to note that the structure of this binding site is rigid because of the coordination of the Zn<sup>2+</sup> between the four residues. This rigidity is indicative that any slight shift on either of the helices will cause a drastic readjustment of the coordination of Zn<sup>2+</sup>. In addition, there are no outer-shell constraints to hold the residues in place, which means that with a readjustment of the molecule, there is no energy being expended to bind or release another Zn<sup>2+</sup> molecule. Therefore, the Zn<sup>2+</sup> is able to rapidly release and a new Zn<sup>2+</sup> can bind again with a simple reorientation or shift of the molecule. This rapid on/off bind and release mechanism is the regulator of homeostatic levels of Zn<sup>2+</sup> in the cell, which is significantly faster than other Zn<sup>2+</sup> exchange rate proteins by several orders of magnitude.


'''Binding Site C'''
'''Binding Site C'''

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA, Geoffrey C. Hoops, Madison Walberry, Austin S. Moore, Jessica Klingensmith, Kyle Colston