Sandbox Reserved 1052: Difference between revisions

No edit summary
No edit summary
Line 5: Line 5:


== Biological Function ==
== Biological Function ==
Czr A is a transcriptional repressor protein responsible for the regulation of the Czr operon. The Czr operon contains genes for the proteins Czr A and Czr B. Czr B is a Zinc transport protein which moves Zn<sup>2+</sup> out of a cell while Czr A regulates this process by controlling expression level of Czr B. When relatively low amounts of zinc are present in the cell Czr A will bind to DNA, preventing the progression of RNA polymerase and thus inhibiting expression of Czr B. Decreased expression of Czr B results in the ability of the cell to retain Zn<sup>2+</sup> more readily. Because Czr A and Czr B are transcribed as part of the same operon, an inhibitor of Czr A must be readily available to allow full transcription of Czr B when necessary. Czr A is noncompetitively inhibited by the binding of two Zn<sup>2+</sup> ions, which is ideal in that this allows for expression of Czr B, a Zn<sup>2+</sup> transporter to be dependent on the relative amount of Zn<sup>2+</sup> in the cell.  Czr A displays two different conformations; the first typically binds DNA and has relatively low affinity for Zn<sup>2+</sup>, in this conformation the <scene name='69/694220/A5_helices__dna_binding/1'>a5 helices are open</scene>. The <scene name='69/694220/A5_helices_dna_binding/1'>a5 helices swing down</scene> to achieve the other conformation which binds two Zn<sup>2+</sup> ions and has relatively low affinity for DNA<ref>DOI: 10.1073pnas.0905558106</ref>.   
Czr A is a transcriptional repressor protein responsible for the regulation of the Czr operon. The Czr operon contains genes for the proteins Czr A and Czr B. Czr B is a Zinc transport protein which moves Zn<sup>2+</sup> out of a cell while Czr A regulates this process by controlling expression level of Czr B. When relatively low amounts of zinc are present in the cell Czr A will bind to DNA, preventing the progression of RNA polymerase and thus inhibiting expression of Czr B. Decreased expression of Czr B results in the ability of the cell to retain Zn<sup>2+</sup> more readily. Because Czr A and Czr B are transcribed as part of the same operon, an inhibitor of Czr A must be readily available to allow full transcription of Czr B when necessary. Czr A is noncompetitively inhibited by the binding of two Zn<sup>2+</sup> ions, which is ideal in that this allows for expression of Czr B, a Zn<sup>2+</sup> transporter to be dependent on the relative amount of Zn<sup>2+</sup> in the cell.  Czr A displays two different conformations; the first typically binds DNA and has relatively low affinity for Zn<sup>2+</sup>, in this conformation the <scene name='69/694220/A5_helices__dna_binding/1'>a5 helices are open</scene>. The <scene name='69/694220/A5_helices_dna_binding/1'>a5 helices swing down</scene> to achieve the other conformation which binds two Zn<sup>2+</sup> ions and has relatively low affinity for DNA.   
===DNA Binding ===
===DNA Binding ===
Czr A performs it's primary function when bound to DNA. Each monomeric subunit of the protein binds DNA individually, coming together once attached to the DNA. While bound, Czr A prevents the transcription of the DNA in the Czr operon, acting as a repressor protein and effectively turning off the operon. As was briefly mentioned above, the Czr operon contains the gene responsible for producing Czr B, a metal transport protein which regulates the concentration of zinc in the cell. So, by extension, Czr A is responsible for retaining Zn<sup>2+</sup> inside the cell by inhibiting the production of the protein responsible for transporting zinc out of the cell<ref>DOI: 10.1073pnas.0905558106</ref>.
Czr A performs it's primary function when bound to DNA. Each monomeric subunit of the protein binds DNA individually, coming together once attached to the DNA. While bound, Czr A prevents the transcription of the DNA in the Czr operon, acting as a repressor protein and effectively turning off the operon. As was briefly mentioned above, the Czr operon contains the gene responsible for producing Czr B, a metal transport protein which regulates the concentration of zinc in the cell. So, by extension, Czr A is responsible for retaining Zn<sup>2+</sup> inside the cell by inhibiting the production of the protein responsible for transporting zinc out of the cell.
===Zinc Binding ===
===Zinc Binding ===
Zinc acts as an inhibitor to Czr A, thus preventing transcriptional repression of Czr B and allowing Zn<sup>2+</sup> transport out of the cell. This allows for zinc transport to essentially be self regulated. That is, when zinc concentration in the cell is relatively high, zinc ions bind to Czr A, causing a conformational change which releases the bound DNA. DNA without Czr A bound is free to be transcribed and Czr B is again expressed, allowing for Zn<sup>2+</sup> transport out of the cell<ref>DOI: 10.1073pnas.0905558106</ref>.
Zinc acts as an inhibitor to Czr A, thus preventing transcriptional repression of Czr B and allowing Zn<sup>2+</sup> transport out of the cell. This allows for zinc transport to essentially be self regulated. That is, when zinc concentration in the cell is relatively high, zinc ions bind to Czr A, causing a conformational change which releases the bound DNA. DNA without Czr A bound is free to be transcribed and Czr B is again expressed, allowing for Zn<sup>2+</sup> transport out of the cell.


== Structural Overview ==
== Structural Overview ==

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA, Morgan Blake, Sarah Zimmerman, Geoffrey C. Hoops, Mary Liggett, Jakob Jozwiakowski