Sandbox Reserved 1063: Difference between revisions
No edit summary |
No edit summary |
||
Line 28: | Line 28: | ||
=== Zinc's Allosteric Activation === | === Zinc's Allosteric Activation === | ||
The binding of Zinc allows for the conformational change that induces the binding of DNA in order to activate genes. The binding of Zinc metals creates a hydrogen bond network within the protein that connects the metal binding sites and the [https://en.wikipedia.org/wiki/DNA-binding_domain DNA binding domain]. Most importantly, the hydrogen bonding network connects the metal binding pockets to the alpha 4 helix, which is known as the recognition helix. Alpha 4 helix plays a crucial role in binding DNA. The specific sequence of DNA that is recognized by alpha helix 4 is unknown at the moment; however, scientists believe that the hydrogen bond network acts as an allosteric activator for the protein to bind DNA. The hydrogen bond network connects the alpha 2 and alpha 4 helix via hydrogen bonding between specific residues. After zinc is bound, a E24 residue from a random coil accepts a hydrogen bond from the carboxamide end of a N38 residue from the alpha 2 helix. Then, a Q40 residue from alpha 2 helix accepts a hydrogen bond from a S74 residue from the alpha 4 helix. The same <scene name='69/694230/Hydrogen_bonding_1/1'>Hyrdogen Bonding Network</scene> is seen across the MarR family as a whole. Now the protein is ready to bind DNA. | The binding of Zinc allows for the conformational change that induces the binding of DNA in order to activate genes. The binding of Zinc metals creates a hydrogen bond network within the protein that connects the metal binding sites and the [https://en.wikipedia.org/wiki/DNA-binding_domain DNA binding domain]. Most importantly, the hydrogen bonding network connects the metal binding pockets to the alpha 4 helix, which is known as the recognition helix. Alpha 4 helix plays a crucial role in binding DNA. The specific sequence of DNA that is recognized by alpha helix 4 is unknown at the moment; however, scientists believe that the hydrogen bond network acts as an allosteric activator for the protein to bind DNA. The hydrogen bond network connects the alpha 2 and alpha 4 helix via hydrogen bonding between specific residues. After zinc is bound, a <center><big><b><font color='blue'>E24</font> residue from a random coil accepts a hydrogen bond from the carboxamide end of a N38 residue from the alpha 2 helix. Then, a Q40 residue from alpha 2 helix accepts a hydrogen bond from a S74 residue from the alpha 4 helix. The same <scene name='69/694230/Hydrogen_bonding_1/1'>Hyrdogen Bonding Network</scene> is seen across the MarR family as a whole. Now the protein is ready to bind DNA. | ||
=== Helix-Turn-Helix Domain === | === Helix-Turn-Helix Domain === |