2yh2: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==Pyrobaculum calidifontis esterase monoclinic form== | ==Pyrobaculum calidifontis esterase monoclinic form== | ||
<StructureSection load='2yh2' size='340' side='right' caption='[[2yh2]], [[Resolution|resolution]] 2.20Å' scene=''> | <StructureSection load='2yh2' size='340' side='right' caption='[[2yh2]], [[Resolution|resolution]] 2.20Å' scene=''> | ||
Line 6: | Line 7: | ||
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[2wir|2wir]]</td></tr> | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[2wir|2wir]]</td></tr> | ||
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Carboxylesterase Carboxylesterase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.1.1.1 3.1.1.1] </span></td></tr> | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Carboxylesterase Carboxylesterase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.1.1.1 3.1.1.1] </span></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2yh2 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2yh2 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2yh2 RCSB], [http://www.ebi.ac.uk/pdbsum/2yh2 PDBsum]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2yh2 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2yh2 OCA], [http://pdbe.org/2yh2 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=2yh2 RCSB], [http://www.ebi.ac.uk/pdbsum/2yh2 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=2yh2 ProSAT]</span></td></tr> | ||
</table> | </table> | ||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
Line 16: | Line 17: | ||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
</div> | </div> | ||
<div class="pdbe-citations 2yh2" style="background-color:#fffaf0;"></div> | |||
== References == | == References == | ||
<references/> | <references/> |
Revision as of 22:48, 15 December 2016
Pyrobaculum calidifontis esterase monoclinic formPyrobaculum calidifontis esterase monoclinic form
Structural highlights
Publication Abstract from PubMedThe highly thermostable esterase from the hyperthermophilic archaeon Pyrobaculum calidifontis VA1 (PestE) shows high enantioselectivity (E > 100) in the kinetic resolution of racemic chiral carboxylic acids, but little selectivity towards acetates of tertiary alcohols (E = 2-4). To explain these unique properties, its crystal structure has been determined at 2.0 A resolution. The enzyme is a member of the hormone-sensitive lipase group (group H) of the esterase/lipase superfamily on the basis of the amino acid sequence identity. The PestE structure shows a canonical alpha/beta-hydrolase fold as core domain with a cap structure at the C-terminal end of the beta-sheet. A tetramer in the crystal packing is formed of two dimers; the dimeric form is observed in solution. Conserved dimers and even tetramers are found in other group H proteins. The amino acid residues Ser157, His284, and Asp254 form the catalytic triad, which is typically found in alpha/beta-hydrolases. The oxyanion hole is composed of Gly85 and Gly86 within the conserved sequence motif HGGG(M,F,W) (amino acid residues 83-87) and Ala158. With the elucidated structure, experimental results about enantioselectivity towards the two model substrate classes (as exemplified for 3-phenylbutanoic acid ethyl ester and 1,1,1-trifluoro-2-phenylbut-3-yn-2-yl acetate) could be explained by molecular modeling. For both enantiomers of the tertiary alcohol, orientations in two binding pockets were obtained without significant energy differences corresponding to the observed low enantioselectivity due to missing steric repulsions. In contrast, for the carboxylic acid ester, two different orientations with significant energy differences for each enantiomer were found matching the high E values. The crystal structure of an esterase from the hyperthermophilic microorganism Pyrobaculum calidifontis VA1 explains its enantioselectivity.,Palm GJ, Fernandez-Alvaro E, Bogdanovic X, Bartsch S, Sczodrok J, Singh RK, Bottcher D, Atomi H, Bornscheuer UT, Hinrichs W Appl Microbiol Biotechnol. 2011 Aug;91(4):1061-72. Epub 2011 May 26. PMID:21614503[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|