3iaa: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
==Crystal Structure of CalG2, Calicheamicin Glycosyltransferase, TDP bound form==
==Crystal Structure of CalG2, Calicheamicin Glycosyltransferase, TDP bound form==
<StructureSection load='3iaa' size='340' side='right' caption='[[3iaa]], [[Resolution|resolution]] 2.50&Aring;' scene=''>
<StructureSection load='3iaa' size='340' side='right' caption='[[3iaa]], [[Resolution|resolution]] 2.50&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[3iaa]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Micromonospora_echinospora Micromonospora echinospora]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3IAA OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3IAA FirstGlance]. <br>
<table><tr><td colspan='2'>[[3iaa]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Atcc_15837 Atcc 15837]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3IAA OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3IAA FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=TYD:THYMIDINE-5-DIPHOSPHATE'>TYD</scene></td></tr>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=TYD:THYMIDINE-5-DIPHOSPHATE'>TYD</scene></td></tr>
<tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene></td></tr>
<tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene></td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3ia7|3ia7]]</td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3ia7|3ia7]]</td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">calG2, Q8KNE0 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=1877 Micromonospora echinospora])</td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">calG2, Q8KNE0 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=1877 ATCC 15837])</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3iaa FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3iaa OCA], [http://www.rcsb.org/pdb/explore.do?structureId=3iaa RCSB], [http://www.ebi.ac.uk/pdbsum/3iaa PDBsum]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3iaa FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3iaa OCA], [http://pdbe.org/3iaa PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=3iaa RCSB], [http://www.ebi.ac.uk/pdbsum/3iaa PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=3iaa ProSAT]</span></td></tr>
</table>
</table>
== Evolutionary Conservation ==
== Evolutionary Conservation ==
Line 17: Line 18:
     <text>to colour the structure by Evolutionary Conservation</text>
     <text>to colour the structure by Evolutionary Conservation</text>
   </jmolCheckbox>
   </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=3iaa ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
<div style="background-color:#fffaf0;">
Line 27: Line 28:
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
</div>
<div class="pdbe-citations 3iaa" style="background-color:#fffaf0;"></div>


==See Also==
==See Also==
Line 34: Line 36:
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Micromonospora echinospora]]
[[Category: Atcc 15837]]
[[Category: Bingman, C A]]
[[Category: Bingman, C A]]
[[Category: Chang, A]]
[[Category: Chang, A]]

Revision as of 23:27, 9 December 2016

Crystal Structure of CalG2, Calicheamicin Glycosyltransferase, TDP bound formCrystal Structure of CalG2, Calicheamicin Glycosyltransferase, TDP bound form

Structural highlights

3iaa is a 2 chain structure with sequence from Atcc 15837. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:
NonStd Res:
Gene:calG2, Q8KNE0 (ATCC 15837)
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Glycosyltransferases are useful synthetic catalysts for generating natural products with sugar moieties. Although several natural product glycosyltransferase structures have been reported, design principles of glycosyltransferase engineering for the generation of glycodiversified natural products has fallen short of its promise, partly due to a lack of understanding of the relationship between structure and function. Here, we report structures of all four calicheamicin glycosyltransferases (CalG1, CalG2, CalG3, and CalG4), whose catalytic functions are clearly regiospecific. Comparison of these four structures reveals a conserved sugar donor binding motif and the principles of acceptor binding region reshaping. Among them, CalG2 possesses a unique catalytic motif for glycosylation of hydroxylamine. Multiple glycosyltransferase structures in a single natural product biosynthetic pathway are a valuable resource for understanding regiospecific reactions and substrate selectivities and will help future glycosyltransferase engineering.

Complete set of glycosyltransferase structures in the calicheamicin biosynthetic pathway reveals the origin of regiospecificity.,Chang A, Singh S, Helmich KE, Goff RD, Bingman CA, Thorson JS, Phillips GN Jr Proc Natl Acad Sci U S A. 2011 Oct 25;108(43):17649-54. Epub 2011 Oct 10. PMID:21987796[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Chang A, Singh S, Helmich KE, Goff RD, Bingman CA, Thorson JS, Phillips GN Jr. Complete set of glycosyltransferase structures in the calicheamicin biosynthetic pathway reveals the origin of regiospecificity. Proc Natl Acad Sci U S A. 2011 Oct 25;108(43):17649-54. Epub 2011 Oct 10. PMID:21987796 doi:10.1073/pnas.1108484108

3iaa, resolution 2.50Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA