5l66: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
'''Unreleased structure'''
{{Large structure}}
==Yeast 20S proteasome with mouse beta5i (1-138) and mouse beta6 (97-111; 118-133) in complex with bortezomib==
<StructureSection load='5l66' size='340' side='right' caption='[[5l66]], [[Resolution|resolution]] 2.80&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[5l66]] is a 28 chain structure with sequence from [http://en.wikipedia.org/wiki/ ] and [http://en.wikipedia.org/wiki/Saccharomyces_cerevisiae_(strain_atcc_204508_/_s288c) Saccharomyces cerevisiae (strain atcc 204508 / s288c)]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5L66 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5L66 FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=BO2:N-[(1R)-1-(DIHYDROXYBORYL)-3-METHYLBUTYL]-N-(PYRAZIN-2-YLCARBONYL)-L-PHENYLALANINAMIDE'>BO2</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[5cz4|5cz4]]</td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Proteasome_endopeptidase_complex Proteasome endopeptidase complex], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.4.25.1 3.4.25.1] </span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5l66 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5l66 OCA], [http://pdbe.org/5l66 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5l66 RCSB], [http://www.ebi.ac.uk/pdbsum/5l66 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5l66 ProSAT]</span></td></tr>
</table>
{{Large structure}}
== Function ==
[[http://www.uniprot.org/uniprot/PSA7_YEAST PSA7_YEAST]] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity. [[http://www.uniprot.org/uniprot/PSB8_MOUSE PSB8_MOUSE]] The proteasome is a multicatalytic proteinase complex which is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. The proteasome has an ATP-dependent proteolytic activity. This subunit is involved in antigen processing to generate class I binding peptides. May be involved in the inflammatory response pathway. Required for adipocyte differentiation.<ref>PMID:21881205</ref> <ref>PMID:22341445</ref> <ref>PMID:8066463</ref>  [[http://www.uniprot.org/uniprot/PSA4_YEAST PSA4_YEAST]] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity. [[http://www.uniprot.org/uniprot/PSA1_YEAST PSA1_YEAST]] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity. [[http://www.uniprot.org/uniprot/PSB3_YEAST PSB3_YEAST]] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity. This subunit may participate in the trypsin-like activity of the enzyme complex. [[http://www.uniprot.org/uniprot/PSA3_YEAST PSA3_YEAST]] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity. [[http://www.uniprot.org/uniprot/PSB6_YEAST PSB6_YEAST]] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity. [[http://www.uniprot.org/uniprot/PSB1_YEAST PSB1_YEAST]] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity. PRE3 and PRE4 are necessary for the peptidyl-glutamyl-peptide-hydrolyzing activity.  This subunit is necessary for the peptidylglutamyl-peptide hydrolyzing activity. [[http://www.uniprot.org/uniprot/PSB2_YEAST PSB2_YEAST]] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity. [[http://www.uniprot.org/uniprot/PSA5_YEAST PSA5_YEAST]] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity. [[http://www.uniprot.org/uniprot/PSA2_YEAST PSA2_YEAST]] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity. [[http://www.uniprot.org/uniprot/PSB4_YEAST PSB4_YEAST]] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity. This subunit has a chymotrypsin-like activity. [[http://www.uniprot.org/uniprot/PSB7_YEAST PSB7_YEAST]] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity. PRE3 and PRE4 are necessary for the peptidyl-glutamyl-peptide-hydrolyzing activity.<ref>PMID:8381431</ref>  [[http://www.uniprot.org/uniprot/PSA6_YEAST PSA6_YEAST]] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity.
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Inhibition of the immunoproteasome subunit beta5i alleviates autoimmune diseases in preclinical studies and represents a promising new anti-inflammatory therapy. However, the lack of structural data on the human immunoproteasome still hampers drug design. Here, we systematically determined the potency of seven alpha' beta' epoxyketone inhibitors with varying N-caps and P3-stereochemistry for mouse/human beta5c/beta5i and found pronounced differences in their subunit and species selectivity. Using X-ray crystallography, the compounds were analyzed for their modes of binding to chimeric yeast proteasomes that incorporate key parts of human beta5c, human beta5i or mouse beta5i and the neighboring beta6 subunit. The structural data reveal exceptional conformations for the most selective human beta5i inhibitors and highlight subtle structural differences as the major reason for the observed species selectivity. Altogether, the presented results validate the humanized yeast proteasome as a powerful tool for structure-based development of beta5i inhibitors with potential clinical applications.


The entry 5l66 is ON HOLD  until Paper Publication
A humanized yeast proteasome identifies unique binding modes of inhibitors for the immunosubunit beta5i.,Huber EM, Heinemeyer W, de Bruin G, Overkleeft HS, Groll M EMBO J. 2016 Dec 1;35(23):2602-2613. Epub 2016 Oct 27. PMID:27789522<ref>PMID:27789522</ref>


Authors: Groll, M., Huber, E.M.
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 
</div>
Description: Yeast 20S proteasome with mouse beta5i (1-138) and mouse beta6 (97-111; 118-133) in complex with bortezomib
<div class="pdbe-citations 5l66" style="background-color:#fffaf0;"></div>
[[Category: Unreleased Structures]]
== References ==
[[Category: Huber, E.M]]
<references/>
__TOC__
</StructureSection>
[[Category: Proteasome endopeptidase complex]]
[[Category: Groll, M]]
[[Category: Groll, M]]
[[Category: Huber, E M]]
[[Category: Binding analysis]]
[[Category: Hydrolase-hydrolase inhibitor complex]]
[[Category: Inhibitor]]
[[Category: Mutant]]
[[Category: Proteasome]]

Revision as of 22:55, 9 December 2016

Warning: this is a large structure, and loading might take a long time or not happen at all.

Yeast 20S proteasome with mouse beta5i (1-138) and mouse beta6 (97-111; 118-133) in complex with bortezomibYeast 20S proteasome with mouse beta5i (1-138) and mouse beta6 (97-111; 118-133) in complex with bortezomib

Structural highlights

5l66 is a 28 chain structure with sequence from [1] and Saccharomyces cerevisiae (strain atcc 204508 / s288c). Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:, ,
Activity:Proteasome endopeptidase complex, with EC number 3.4.25.1
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT
Warning: this is a large structure, and loading might take a long time or not happen at all.

Function

[PSA7_YEAST] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity. [PSB8_MOUSE] The proteasome is a multicatalytic proteinase complex which is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. The proteasome has an ATP-dependent proteolytic activity. This subunit is involved in antigen processing to generate class I binding peptides. May be involved in the inflammatory response pathway. Required for adipocyte differentiation.[1] [2] [3] [PSA4_YEAST] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity. [PSA1_YEAST] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity. [PSB3_YEAST] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity. This subunit may participate in the trypsin-like activity of the enzyme complex. [PSA3_YEAST] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity. [PSB6_YEAST] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity. [PSB1_YEAST] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity. PRE3 and PRE4 are necessary for the peptidyl-glutamyl-peptide-hydrolyzing activity. This subunit is necessary for the peptidylglutamyl-peptide hydrolyzing activity. [PSB2_YEAST] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity. [PSA5_YEAST] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity. [PSA2_YEAST] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity. [PSB4_YEAST] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity. This subunit has a chymotrypsin-like activity. [PSB7_YEAST] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity. PRE3 and PRE4 are necessary for the peptidyl-glutamyl-peptide-hydrolyzing activity.[4] [PSA6_YEAST] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity.

Publication Abstract from PubMed

Inhibition of the immunoproteasome subunit beta5i alleviates autoimmune diseases in preclinical studies and represents a promising new anti-inflammatory therapy. However, the lack of structural data on the human immunoproteasome still hampers drug design. Here, we systematically determined the potency of seven alpha' beta' epoxyketone inhibitors with varying N-caps and P3-stereochemistry for mouse/human beta5c/beta5i and found pronounced differences in their subunit and species selectivity. Using X-ray crystallography, the compounds were analyzed for their modes of binding to chimeric yeast proteasomes that incorporate key parts of human beta5c, human beta5i or mouse beta5i and the neighboring beta6 subunit. The structural data reveal exceptional conformations for the most selective human beta5i inhibitors and highlight subtle structural differences as the major reason for the observed species selectivity. Altogether, the presented results validate the humanized yeast proteasome as a powerful tool for structure-based development of beta5i inhibitors with potential clinical applications.

A humanized yeast proteasome identifies unique binding modes of inhibitors for the immunosubunit beta5i.,Huber EM, Heinemeyer W, de Bruin G, Overkleeft HS, Groll M EMBO J. 2016 Dec 1;35(23):2602-2613. Epub 2016 Oct 27. PMID:27789522[5]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Kitamura A, Maekawa Y, Uehara H, Izumi K, Kawachi I, Nishizawa M, Toyoshima Y, Takahashi H, Standley DM, Tanaka K, Hamazaki J, Murata S, Obara K, Toyoshima I, Yasutomo K. A mutation in the immunoproteasome subunit PSMB8 causes autoinflammation and lipodystrophy in humans. J Clin Invest. 2011 Oct;121(10):4150-60. doi: 10.1172/JCI58414. Epub 2011 Sep 1. PMID:21881205 doi:http://dx.doi.org/10.1172/JCI58414
  2. Huber EM, Basler M, Schwab R, Heinemeyer W, Kirk CJ, Groettrup M, Groll M. Immuno- and constitutive proteasome crystal structures reveal differences in substrate and inhibitor specificity. Cell. 2012 Feb 17;148(4):727-38. PMID:22341445 doi:10.1016/j.cell.2011.12.030
  3. Fehling HJ, Swat W, Laplace C, Kuhn R, Rajewsky K, Muller U, von Boehmer H. MHC class I expression in mice lacking the proteasome subunit LMP-7. Science. 1994 Aug 26;265(5176):1234-7. PMID:8066463
  4. Hilt W, Enenkel C, Gruhler A, Singer T, Wolf DH. The PRE4 gene codes for a subunit of the yeast proteasome necessary for peptidylglutamyl-peptide-hydrolyzing activity. Mutations link the proteasome to stress- and ubiquitin-dependent proteolysis. J Biol Chem. 1993 Feb 15;268(5):3479-86. PMID:8381431
  5. Huber EM, Heinemeyer W, de Bruin G, Overkleeft HS, Groll M. A humanized yeast proteasome identifies unique binding modes of inhibitors for the immunosubunit beta5i. EMBO J. 2016 Dec 1;35(23):2602-2613. Epub 2016 Oct 27. PMID:27789522 doi:http://dx.doi.org/10.15252/embj.201695222

5l66, resolution 2.80Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA