2rjm: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
==3Ig structure of titin domains I67-I69 E-to-A mutated variant==
==3Ig structure of titin domains I67-I69 E-to-A mutated variant==
<StructureSection load='2rjm' size='340' side='right' caption='[[2rjm]], [[Resolution|resolution]] 2.00&Aring;' scene=''>
<StructureSection load='2rjm' size='340' side='right' caption='[[2rjm]], [[Resolution|resolution]] 2.00&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[2rjm]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Oryctolagus_cuniculus Oryctolagus cuniculus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2RJM OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2RJM FirstGlance]. <br>
<table><tr><td colspan='2'>[[2rjm]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/European_rabbit European rabbit]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2RJM OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2RJM FirstGlance]. <br>
</td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[2rik|2rik]], [[3b43|3b43]]</td></tr>
</td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[2rik|2rik]], [[3b43|3b43]]</td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Non-specific_serine/threonine_protein_kinase Non-specific serine/threonine protein kinase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.11.1 2.7.11.1] </span></td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Non-specific_serine/threonine_protein_kinase Non-specific serine/threonine protein kinase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.11.1 2.7.11.1] </span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2rjm FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2rjm OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2rjm RCSB], [http://www.ebi.ac.uk/pdbsum/2rjm PDBsum]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2rjm FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2rjm OCA], [http://pdbe.org/2rjm PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=2rjm RCSB], [http://www.ebi.ac.uk/pdbsum/2rjm PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=2rjm ProSAT]</span></td></tr>
</table>
</table>
== Evolutionary Conservation ==
== Evolutionary Conservation ==
Line 15: Line 16:
     <text>to colour the structure by Evolutionary Conservation</text>
     <text>to colour the structure by Evolutionary Conservation</text>
   </jmolCheckbox>
   </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2rjm ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
<div style="background-color:#fffaf0;">
Line 25: Line 26:
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
</div>
<div class="pdbe-citations 2rjm" style="background-color:#fffaf0;"></div>


==See Also==
==See Also==
Line 32: Line 34:
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: European rabbit]]
[[Category: Non-specific serine/threonine protein kinase]]
[[Category: Non-specific serine/threonine protein kinase]]
[[Category: Oryctolagus cuniculus]]
[[Category: Castelmur, E von]]
[[Category: Castelmur, E von]]
[[Category: Labeit, D]]
[[Category: Labeit, D]]

Revision as of 23:55, 11 August 2016

3Ig structure of titin domains I67-I69 E-to-A mutated variant3Ig structure of titin domains I67-I69 E-to-A mutated variant

Structural highlights

2rjm is a 1 chain structure with sequence from European rabbit. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Activity:Non-specific serine/threonine protein kinase, with EC number 2.7.11.1
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Myofibril elasticity, critical to muscle function, is dictated by the intrasarcomeric filament titin, which acts as a molecular spring. To date, the molecular events underlying the mechanics of the folded titin chain remain largely unknown. We have elucidated the crystal structure of the 6-Ig fragment I65-I70 from the elastic I-band fraction of titin and validated its conformation in solution using small angle x-ray scattering. The long-range properties of the chain have been visualized by electron microscopy on a 19-Ig fragment and modeled for the full skeletal tandem. Results show that conserved Ig-Ig transition motifs generate high-order in the structure of the filament, where conformationally stiff segments interspersed with pliant hinges form a regular pattern of dynamic super-motifs leading to segmental flexibility in the chain. Pliant hinges support molecular shape rearrangements that dominate chain behavior at moderate stretch, whereas stiffer segments predictably oppose high stretch forces upon full chain extension. There, librational entropy can be expected to act as an energy barrier to prevent Ig unfolding while, instead, triggering the unraveling of flanking springs formed by proline, glutamate, valine, and lysine (PEVK) sequences. We propose a mechanistic model based on freely jointed rigid segments that rationalizes the response to stretch of titin Ig-tandems according to molecular features.

A regular pattern of Ig super-motifs defines segmental flexibility as the elastic mechanism of the titin chain.,von Castelmur E, Marino M, Svergun DI, Kreplak L, Ucurum-Fotiadis Z, Konarev PV, Urzhumtsev A, Labeit D, Labeit S, Mayans O Proc Natl Acad Sci U S A. 2008 Jan 29;105(4):1186-91. Epub 2008 Jan 22. PMID:18212128[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. von Castelmur E, Marino M, Svergun DI, Kreplak L, Ucurum-Fotiadis Z, Konarev PV, Urzhumtsev A, Labeit D, Labeit S, Mayans O. A regular pattern of Ig super-motifs defines segmental flexibility as the elastic mechanism of the titin chain. Proc Natl Acad Sci U S A. 2008 Jan 29;105(4):1186-91. Epub 2008 Jan 22. PMID:18212128

2rjm, resolution 2.00Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA