5p21: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
==REFINED CRYSTAL STRUCTURE OF THE TRIPHOSPHATE CONFORMATION OF H-RAS P21 AT 1.35 ANGSTROMS RESOLUTION: IMPLICATIONS FOR THE MECHANISM OF GTP HYDROLYSIS==
==REFINED CRYSTAL STRUCTURE OF THE TRIPHOSPHATE CONFORMATION OF H-RAS P21 AT 1.35 ANGSTROMS RESOLUTION: IMPLICATIONS FOR THE MECHANISM OF GTP HYDROLYSIS==
<StructureSection load='5p21' size='340' side='right' caption='[[5p21]], [[Resolution|resolution]] 1.35&Aring;' scene=''>
<StructureSection load='5p21' size='340' side='right' caption='[[5p21]], [[Resolution|resolution]] 1.35&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[5p21]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. The April 2012 RCSB PDB [http://pdb.rcsb.org/pdb/static.do?p=education_discussion/molecule_of_the_month/index.html Molecule of the Month] feature on ''Ras Protein''  by David Goodsell is [http://dx.doi.org/10.2210/rcsb_pdb/mom_2012_4 10.2210/rcsb_pdb/mom_2012_4]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5P21 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5P21 FirstGlance]. <br>
<table><tr><td colspan='2'>[[5p21]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. The April 2012 RCSB PDB [http://pdb.rcsb.org/pdb/static.do?p=education_discussion/molecule_of_the_month/index.html Molecule of the Month] feature on ''Ras Protein''  by David Goodsell is [http://dx.doi.org/10.2210/rcsb_pdb/mom_2012_4 10.2210/rcsb_pdb/mom_2012_4]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5P21 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5P21 FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=GNP:PHOSPHOAMINOPHOSPHONIC+ACID-GUANYLATE+ESTER'>GNP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=GNP:PHOSPHOAMINOPHOSPHONIC+ACID-GUANYLATE+ESTER'>GNP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5p21 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5p21 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=5p21 RCSB], [http://www.ebi.ac.uk/pdbsum/5p21 PDBsum]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5p21 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5p21 OCA], [http://pdbe.org/5p21 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5p21 RCSB], [http://www.ebi.ac.uk/pdbsum/5p21 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5p21 ProSAT]</span></td></tr>
</table>
</table>
== Disease ==
== Disease ==
Line 18: Line 19:
     <text>to colour the structure by Evolutionary Conservation</text>
     <text>to colour the structure by Evolutionary Conservation</text>
   </jmolCheckbox>
   </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=5p21 ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
<div style="background-color:#fffaf0;">
Line 28: Line 29:
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
</div>
<div class="pdbe-citations 5p21" style="background-color:#fffaf0;"></div>


==See Also==
==See Also==
Line 35: Line 37:
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Homo sapiens]]
[[Category: Human]]
[[Category: RCSB PDB Molecule of the Month]]
[[Category: RCSB PDB Molecule of the Month]]
[[Category: Ras Protein]]
[[Category: Ras Protein]]

Revision as of 17:45, 11 August 2016

REFINED CRYSTAL STRUCTURE OF THE TRIPHOSPHATE CONFORMATION OF H-RAS P21 AT 1.35 ANGSTROMS RESOLUTION: IMPLICATIONS FOR THE MECHANISM OF GTP HYDROLYSISREFINED CRYSTAL STRUCTURE OF THE TRIPHOSPHATE CONFORMATION OF H-RAS P21 AT 1.35 ANGSTROMS RESOLUTION: IMPLICATIONS FOR THE MECHANISM OF GTP HYDROLYSIS

Structural highlights

5p21 is a 1 chain structure with sequence from Human. The April 2012 RCSB PDB Molecule of the Month feature on Ras Protein by David Goodsell is 10.2210/rcsb_pdb/mom_2012_4. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

[RASH_HUMAN] Defects in HRAS are the cause of faciocutaneoskeletal syndrome (FCSS) [MIM:218040]. A rare condition characterized by prenatally increased growth, postnatal growth deficiency, mental retardation, distinctive facial appearance, cardiovascular abnormalities (typically pulmonic stenosis, hypertrophic cardiomyopathy and/or atrial tachycardia), tumor predisposition, skin and musculoskeletal abnormalities.[1] [2] [3] [4] [5] [6] [7] Defects in HRAS are the cause of congenital myopathy with excess of muscle spindles (CMEMS) [MIM:218040]. CMEMS is a variant of Costello syndrome.[8] Defects in HRAS may be a cause of susceptibility to Hurthle cell thyroid carcinoma (HCTC) [MIM:607464]. Hurthle cell thyroid carcinoma accounts for approximately 3% of all thyroid cancers. Although they are classified as variants of follicular neoplasms, they are more often multifocal and somewhat more aggressive and are less likely to take up iodine than are other follicular neoplasms. Note=Mutations which change positions 12, 13 or 61 activate the potential of HRAS to transform cultured cells and are implicated in a variety of human tumors. Defects in HRAS are a cause of susceptibility to bladder cancer (BLC) [MIM:109800]. A malignancy originating in tissues of the urinary bladder. It often presents with multiple tumors appearing at different times and at different sites in the bladder. Most bladder cancers are transitional cell carcinomas. They begin in cells that normally make up the inner lining of the bladder. Other types of bladder cancer include squamous cell carcinoma (cancer that begins in thin, flat cells) and adenocarcinoma (cancer that begins in cells that make and release mucus and other fluids). Bladder cancer is a complex disorder with both genetic and environmental influences. Note=Defects in HRAS are the cause of oral squamous cell carcinoma (OSCC).[9] Defects in HRAS are the cause of Schimmelpenning-Feuerstein-Mims syndrome (SFM) [MIM:163200]. A disease characterized by sebaceous nevi, often on the face, associated with variable ipsilateral abnormalities of the central nervous system, ocular anomalies, and skeletal defects. Many oral manifestations have been reported, not only including hypoplastic and malformed teeth, and mucosal papillomatosis, but also ankyloglossia, hemihyperplastic tongue, intraoral nevus, giant cell granuloma, ameloblastoma, bone cysts, follicular cysts, oligodontia, and odontodysplasia. Sebaceous nevi follow the lines of Blaschko and these can continue as linear intraoral lesions, as in mucosal papillomatosis.[10]

Function

[RASH_HUMAN] Ras proteins bind GDP/GTP and possess intrinsic GTPase activity.[11] [12] [13]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

The crystal structure of the H-ras oncogene protein p21 complexed to the slowly hydrolysing GTP analogue GppNp has been determined at 1.35 A resolution. 211 water molecules have been built into the electron density. The structure has been refined to a final R-factor of 19.8% for all data between 6 A and 1.35 A. The binding sites of the nucleotide and the magnesium ion are revealed in high detail. For the stretch of amino acid residues 61-65, the temperature factors of backbone atoms are four times the average value of 16.1 A2 due to the multiple conformations. In one of these conformations, the side chain of Gln61 makes contact with a water molecule, which is perfectly placed to be the nucleophile attacking the gamma-phosphate of GTP. Based on this observation, we propose a mechanism for GTP hydrolysis involving mainly Gln61 and Glu63 as activating species for in-line attack of water. Nucleophilic displacement is facilitated by hydrogen bonds from residues Thr35, Gly60 and Lys16. A mechanism for rate enhancement by GAP is also proposed.

Refined crystal structure of the triphosphate conformation of H-ras p21 at 1.35 A resolution: implications for the mechanism of GTP hydrolysis.,Pai EF, Krengel U, Petsko GA, Goody RS, Kabsch W, Wittinghofer A EMBO J. 1990 Aug;9(8):2351-9. PMID:2196171[14]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Aoki Y, Niihori T, Kawame H, Kurosawa K, Ohashi H, Tanaka Y, Filocamo M, Kato K, Suzuki Y, Kure S, Matsubara Y. Germline mutations in HRAS proto-oncogene cause Costello syndrome. Nat Genet. 2005 Oct;37(10):1038-40. Epub 2005 Sep 18. PMID:16170316 doi:ng1641
  2. Gripp KW, Lin AE, Stabley DL, Nicholson L, Scott CI Jr, Doyle D, Aoki Y, Matsubara Y, Zackai EH, Lapunzina P, Gonzalez-Meneses A, Holbrook J, Agresta CA, Gonzalez IL, Sol-Church K. HRAS mutation analysis in Costello syndrome: genotype and phenotype correlation. Am J Med Genet A. 2006 Jan 1;140(1):1-7. PMID:16329078 doi:10.1002/ajmg.a.31047
  3. Kerr B, Delrue MA, Sigaudy S, Perveen R, Marche M, Burgelin I, Stef M, Tang B, Eden OB, O'Sullivan J, De Sandre-Giovannoli A, Reardon W, Brewer C, Bennett C, Quarell O, M'Cann E, Donnai D, Stewart F, Hennekam R, Cave H, Verloes A, Philip N, Lacombe D, Levy N, Arveiler B, Black G. Genotype-phenotype correlation in Costello syndrome: HRAS mutation analysis in 43 cases. J Med Genet. 2006 May;43(5):401-5. Epub 2006 Jan 27. PMID:16443854 doi:jmg.2005.040352
  4. Zampino G, Pantaleoni F, Carta C, Cobellis G, Vasta I, Neri C, Pogna EA, De Feo E, Delogu A, Sarkozy A, Atzeri F, Selicorni A, Rauen KA, Cytrynbaum CS, Weksberg R, Dallapiccola B, Ballabio A, Gelb BD, Neri G, Tartaglia M. Diversity, parental germline origin, and phenotypic spectrum of de novo HRAS missense changes in Costello syndrome. Hum Mutat. 2007 Mar;28(3):265-72. PMID:17054105 doi:10.1002/humu.20431
  5. Gripp KW, Innes AM, Axelrad ME, Gillan TL, Parboosingh JS, Davies C, Leonard NJ, Lapointe M, Doyle D, Catalano S, Nicholson L, Stabley DL, Sol-Church K. Costello syndrome associated with novel germline HRAS mutations: an attenuated phenotype? Am J Med Genet A. 2008 Mar 15;146A(6):683-90. PMID:18247425 doi:10.1002/ajmg.a.32227
  6. Lo IF, Brewer C, Shannon N, Shorto J, Tang B, Black G, Soo MT, Ng DK, Lam ST, Kerr B. Severe neonatal manifestations of Costello syndrome. J Med Genet. 2008 Mar;45(3):167-71. Epub 2007 Nov 26. PMID:18039947 doi:10.1136/jmg.2007.054411
  7. Gremer L, De Luca A, Merbitz-Zahradnik T, Dallapiccola B, Morlot S, Tartaglia M, Kutsche K, Ahmadian MR, Rosenberger G. Duplication of Glu37 in the switch I region of HRAS impairs effector/GAP binding and underlies Costello syndrome by promoting enhanced growth factor-dependent MAPK and AKT activation. Hum Mol Genet. 2010 Mar 1;19(5):790-802. doi: 10.1093/hmg/ddp548. Epub 2009 Dec, 8. PMID:19995790 doi:10.1093/hmg/ddp548
  8. van der Burgt I, Kupsky W, Stassou S, Nadroo A, Barroso C, Diem A, Kratz CP, Dvorsky R, Ahmadian MR, Zenker M. Myopathy caused by HRAS germline mutations: implications for disturbed myogenic differentiation in the presence of constitutive HRas activation. J Med Genet. 2007 Jul;44(7):459-62. Epub 2007 Apr 5. PMID:17412879 doi:jmg.2007.049270
  9. Sakai E, Rikimaru K, Ueda M, Matsumoto Y, Ishii N, Enomoto S, Yamamoto H, Tsuchida N. The p53 tumor-suppressor gene and ras oncogene mutations in oral squamous-cell carcinoma. Int J Cancer. 1992 Dec 2;52(6):867-72. PMID:1459726
  10. Groesser L, Herschberger E, Ruetten A, Ruivenkamp C, Lopriore E, Zutt M, Langmann T, Singer S, Klingseisen L, Schneider-Brachert W, Toll A, Real FX, Landthaler M, Hafner C. Postzygotic HRAS and KRAS mutations cause nevus sebaceous and Schimmelpenning syndrome. Nat Genet. 2012 Jun 10;44(7):783-7. doi: 10.1038/ng.2316. PMID:22683711 doi:10.1038/ng.2316
  11. Guil S, de La Iglesia N, Fernandez-Larrea J, Cifuentes D, Ferrer JC, Guinovart JJ, Bach-Elias M. Alternative splicing of the human proto-oncogene c-H-ras renders a new Ras family protein that trafficks to cytoplasm and nucleus. Cancer Res. 2003 Sep 1;63(17):5178-87. PMID:14500341
  12. Lander HM, Hajjar DP, Hempstead BL, Mirza UA, Chait BT, Campbell S, Quilliam LA. A molecular redox switch on p21(ras). Structural basis for the nitric oxide-p21(ras) interaction. J Biol Chem. 1997 Feb 14;272(7):4323-6. PMID:9020151
  13. Williams JG, Pappu K, Campbell SL. Structural and biochemical studies of p21Ras S-nitrosylation and nitric oxide-mediated guanine nucleotide exchange. Proc Natl Acad Sci U S A. 2003 May 27;100(11):6376-81. Epub 2003 May 9. PMID:12740440 doi:10.1073/pnas.1037299100
  14. Pai EF, Krengel U, Petsko GA, Goody RS, Kabsch W, Wittinghofer A. Refined crystal structure of the triphosphate conformation of H-ras p21 at 1.35 A resolution: implications for the mechanism of GTP hydrolysis. EMBO J. 1990 Aug;9(8):2351-9. PMID:2196171

5p21, resolution 1.35Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA