|
|
Line 1: |
Line 1: |
| <StructureSection load='1xjg' size='350' side='right' caption='Class II ribonucleotide reductase dimer complex with dATP, UDP (stick models) and Mg+2 ion (green) (PDB entry [[1xjg]])' scene=''> | | <StructureSection load='1xjg' size='450' side='right' caption='Class II ribonucleotide reductase dimer complex with dATP, UDP (stick models) and Mg+2 ion (green) (PDB entry [[1xjg]])' scene='46/461381/Cv/1'> |
| == Function == | | == Function == |
| '''Ribonucleotide reductase''' (RNR) catalyzes the formation of deoxyribonucleotides from ribonucleotides<ref>PMID:16756507</ref>. There are 3 classes of RNR.<br /> | | '''Ribonucleotide reductase''' (RNR) catalyzes the formation of deoxyribonucleotides from ribonucleotides<ref>PMID:16756507</ref>. There are 3 classes of RNR.<br /> |
Revision as of 12:28, 11 August 2016
FunctionRibonucleotide reductase (RNR) catalyzes the formation of deoxyribonucleotides from ribonucleotides[1]. There are 3 classes of RNR.
- Class I RNR is a tetramer composed from large (RNR1) and small (RNR2) subunits. Class I RNR is iron-dependent and produces tyrosyl radical. Thimidine triphosphate (TTP) is an effector in the reaction.
- Class II RNR reduces ribonucleotide triphosphates using coenzyme B12.
- Class III RNR generate glycine radical using S-adenosyl methionine and Fe-S center.
For details on human RNR2 see P53R2.
For mouse RNR see Mouse Ribonucleotide Reductase R2.
For RNR small subunit with nitrotyrosine modification see Nitrotyrosine.
RelevanceRNR inhibitors are studied as therapeutic antiviral, antibacterial and anti-cancer drugs[2].
Structural highlightsClass II RNR is vitamin B12-dependent. The active site which binds the substrate is in a tight pocket and contains conserved residues involved in the catalytic mechanism [3]
| |
3D Structures of Ribonucleotide reductase3D Structures of Ribonucleotide reductase
Updated on 11-August-2016
{"openlevels":0}
- Class I ribonucleotide reductase
- Ribonucleotide reductase large subunit
- 1zyz, 1zzd, 2cvs, 2cvt, 2cvu, 2cvv, 2cvw, 2cvx, 2cvy - yRNR R1 – yeast
- 5r1r, 6r1r, 7r1r, 1r1r, 1rlr, 1mrr - EcRNR R1 – Escherichia coli
- 4n82 – SsRNR – Streptococcus sanguinis
- Ribonucleotide reductase large subunit complex
- 3hnc – hRNR M1 + TTP – human
- 3hnd – hRNR M1 + GDP + TTP
- 3hne, 3hnf – hRNR M1 + ATP + TTP
- 2wgh, 5d1y - hRNR M1 + ATP + Mg
- 4x3v - hRNR M1 + inhibitor
- 3paw - yRNR R1 + ATP
- 3k8t - yRNR R1 + ADP analog
- 3s87 - yRNR R1 + ADP + GTP
- 3s8a - yRNR R1 (mutant) + GTP
- 3tba - yRNR R1 (mutant) + GTP + ADP
- 3s8b - yRNR R1 + AMPPNP + CDP
- 3s8c, 3tb9 - yRNR R1 (mutant) + AMPPNP + CDP
- 2zlf, 2zlg - yRNR R1 + peptide
- 2eud - yRNR R1 + ligand
- 3rsr – yRNR + inhibitor
- 2r1r - EcRNR R1 + TTP
- 3r1r - EcRNR R1 + AMPPNP
- 4r1r - EcRNR R1 + GDP + TTP
- 1qfn - EcRNR R1 + glutaredoxin 1
- 1peu - StRNR + DTP - Salmonella typhimurium
- RNR small subunit
- 2xof, 3n37, 3n38, 2alx, 1piy, 1r65, 1mxr, 1jqc, 1jpr, 1av8, 1xik, 1rib, 4m1f – EcRNR R2
- 1yfd, 1piz, 1pj0, 1pj1, 1pm2, 1pim, 1piu, 1biq, 2av8, 1pfr - EcRNR R2 (mutant) + Fe
- 3hf1, 2vux, 2uw2, 4djn – hRNR M2
- 3mjo, 3dhz, 1oqu, 1kgn, 1kgo, 1kgp – RNR R2 – Corynebacterium ammoniagenes
- 2p1i – RNR R2 – Plasmodium yoelii
- 2o1z - RNR R2 – Plasmodium vivax
- 1w68, 1h0n, 1h0o, 1xsm – mRNR R2 – mouse
- 1smq, 1sms – yRNR 2
- 4d8f, 4d8g, 4m1i - CtRNR R2 + Fe + Mn
- 1syy - CtRNR R2 + Fe + Pb– Chlamydia trachomatis
- 2ani - CtRNR R2 (mutant) + Fe + Pb
- 4m1h - CtRNR R2
- 4dr0 - RNR + Mn – Bacillus subtilis
- 1uzr – RNR R2 – Mycobacterium tuberculosis
- 3olj – hRNR M2
- 1jk0 – yRNR Y2+Y4
- 3vpm, 3vpn, 3vpo – hRNR M2 (mutant)
- 2rcc – RNR – Bacillus halodurans
- 4bmq, 4bmr, 4bmt - BcRNR + Fe – Bacillus cereus
- 4bmu - BcRNR + Mn
- 4n83 - SsRNR + Mn
- Ribonucleotide reductase small subunit complex
- Ribonucleotide reductase small+large subunit
- 3uus, 4erm - EcRNR R1+ R2
- 4erp - EcRNR R1+ R2 + inhibitor
- 2xak, 2xap, 2xo4, 2xo5 - EcRNR R1+ R2 peptide
- 2xav, 2xaw, 2xax, 2xay, 2xaz, 2x0x - EcRNR R1 (mutant) + R2 peptide
- 5cns, 5cnt, 5cnv, 5cnu - EcRNR R1 + R2 + 2 nucleotides
- 2bq1 - StRNR R1+ R2
- 5im3 - RNR + dATP – Pseudomonas aeruginosa
- Class II ribonucleotide reductase
- 1xjf, 4col – TmRNR + DATP – Thermotoga maritima
- 4coi, 4com, 4con – TmRNR
- 1xjg, 1xjk, 1xje, 1xjn, 4coj - TmRNR + 2 nucleotides
- 1xjj - TmRNR + GTP
- 1xjm - TmRNR + TTP
- 3o0n - TmRNR + TTP + Co + Mg + deoxyadenosine + B12
- 3o0o - TmRNR + TTP + GDP + Mg + deoxyadenosine + B12
- 3o0q - TmRNR + TTP + GDP + Mg + adenosine
- 1pem - StRNR R1
- 1r2f, 2r2f - StRNR R2
- 1peo, 1peq, 2peu - StRNR R1 + effector
- 1l1l – RNR (mutant) – Lactobacillus leichmannii
- Class III ribonucleotide reductase
- 1h78, 1h79, 1h7a, 1hk8 – T4RNR (mutant) + nucleotide triphosphate – bacteriophage T4
- 1h7b – T4RNR (mutant)
- 4u3e – TmRNR large subunit
ReferencesReferences
- ↑ Nordlund P, Reichard P. Ribonucleotide reductases. Annu Rev Biochem. 2006;75:681-706. PMID:16756507 doi:http://dx.doi.org/10.1146/annurev.biochem.75.103004.142443
- ↑ Munro JB, Silva JC. Ribonucleotide reductase as a target to control apicomplexan diseases. Curr Issues Mol Biol. 2012;14(1):9-26. Epub 2011 Jul 26. PMID:21791713
- ↑ Larsson KM, Jordan A, Eliasson R, Reichard P, Logan DT, Nordlund P. Structural mechanism of allosteric substrate specificity regulation in a ribonucleotide reductase. Nat Struct Mol Biol. 2004 Nov;11(11):1142-9. Epub 2004 Oct 10. PMID:15475969 doi:http://dx.doi.org/10.1038/nsmb838
proteopedia link