4or5: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==Crystal structure of HIV-1 Tat complexed with human P-TEFb and AFF4== | ==Crystal structure of HIV-1 Tat complexed with human P-TEFb and AFF4== | ||
<StructureSection load='4or5' size='340' side='right' caption='[[4or5]], [[Resolution|resolution]] 2.90Å' scene=''> | <StructureSection load='4or5' size='340' side='right' caption='[[4or5]], [[Resolution|resolution]] 2.90Å' scene=''> | ||
Line 6: | Line 7: | ||
<tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=TPO:PHOSPHOTHREONINE'>TPO</scene></td></tr> | <tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=TPO:PHOSPHOTHREONINE'>TPO</scene></td></tr> | ||
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">CDK9, CDC2L4, TAK ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN]), CCNT1 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN]), tat ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=11706 HIV-1]), AFF4, AF5Q31, MCEF, HSPC092 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr> | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">CDK9, CDC2L4, TAK ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN]), CCNT1 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN]), tat ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=11706 HIV-1]), AFF4, AF5Q31, MCEF, HSPC092 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4or5 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4or5 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=4or5 RCSB], [http://www.ebi.ac.uk/pdbsum/4or5 PDBsum]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4or5 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4or5 OCA], [http://pdbe.org/4or5 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4or5 RCSB], [http://www.ebi.ac.uk/pdbsum/4or5 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=4or5 ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Disease == | == Disease == | ||
Line 20: | Line 21: | ||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
</div> | </div> | ||
<div class="pdbe-citations 4or5" style="background-color:#fffaf0;"></div> | |||
==See Also== | ==See Also== |
Revision as of 11:29, 11 August 2016
Crystal structure of HIV-1 Tat complexed with human P-TEFb and AFF4Crystal structure of HIV-1 Tat complexed with human P-TEFb and AFF4
Structural highlights
Disease[AFF4_HUMAN] Note=A chromosomal aberration involving AFF4 is found in acute lymphoblastic leukemia (ALL). Insertion ins(5;11)(q31;q13q23) that forms a MLL-AFF4 fusion protein. [CDK9_HUMAN] Note=Chronic activation of CDK9 causes cardiac myocyte enlargement leading to cardiac hypertrophy, and confers predisposition to heart failure. Function[AFF4_HUMAN] Key component of the super elongation complex (SEC), a complex required to increase the catalytic rate of RNA polymerase II transcription by suppressing transient pausing by the polymerase at multiple sites along the DNA. In the SEC complex, AFF4 acts as a central scaffold that recruits other factors through direct interactions with ELL proteins (ELL, ELL2 or ELL3) and the P-TEFb complex. In case of infection by HIV-1 virus, the SEC complex is recruited by the viral Tat protein to stimulate viral gene expression.[1] [2] [3] [CDK9_HUMAN] Protein kinase involved in the regulation of transcription. Member of the cyclin-dependent kinase pair (CDK9/cyclin-T) complex, also called positive transcription elongation factor b (P-TEFb), which facilitates the transition from abortive to productive elongation by phosphorylating the CTD (C-terminal domain) of the large subunit of RNA polymerase II (RNAP II) POLR2A, SUPT5H and RDBP. This complex is inactive when in the 7SK snRNP complex form. Phosphorylates EP300, MYOD1, RPB1/POLR2A and AR, and the negative elongation factors DSIF and NELF. Regulates cytokine inducible transcription networks by facilitating promoter recognition of target transcription factors (e.g. TNF-inducible RELA/p65 activation and IL-6-inducible STAT3 signaling). Promotes RNA synthesis in genetic programs for cell growth, differentiation and viral pathogenesis. P-TEFb is also involved in cotranscriptional histone modification, mRNA processing and mRNA export. Modulates a complex network of chromatin modifications including histone H2B monoubiquitination (H2Bub1), H3 lysine 4 trimethylation (H3K4me3) and H3K36me3; integrates phosphorylation during transcription with chromatin modifications to control co-transcriptional histone mRNA processing. The CDK9/cyclin-K complex has also a kinase activity towards CTD of RNAP II and can substitute for CDK9/cyclin-T P-TEFb in vitro. Replication stress response protein; the CDK9/cyclin-K complex is required for genome integrity maintenance, by promoting cell cycle recovery from replication arrest and limiting single-stranded DNA amount in response to replication stress, thus reducing the breakdown of stalled replication forks and avoiding DNA damage. In addition, probable function in DNA repair of isoform 2 via interaction with KU70/XRCC6. Promotes cardiac myocyte enlargement. RPB1/POLR2A phosphorylation on 'Ser-2' in CTD activates transcription. AR phosphorylation modulates AR transcription factor promoter selectivity and cell growth. DSIF and NELF phosphorylation promotes transcription by inhibiting their negative effect. The phosphorylation of MYOD1 enhances its transcriptional activity and thus promotes muscle differentiation.[4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [TAT_HV1H2] Nuclear transcriptional activator of viral gene expression, that is essential for viral transcription from the LTR promoter and replication. Acts as a sequence-specific molecular adapter, directing components of the cellular transcription machinery to the viral RNA to promote processive transcription elongation by the RNA polymerase II (RNA pol II) complex, thereby increasing the level of full-length transcripts. In the absence of Tat, the RNA Pol II generates short or non-processive transcripts that terminate at approximately 60 bp from the initiation site. Tat associates with the CCNT1/cyclin-T1 component of the P-TEFb complex (CDK9 and CCNT1), which promotes RNA chain elongation. This binding increases Tat's affinity for a hairpin structure at the 5'-end of all nascent viral mRNAs referred to as the transactivation responsive RNA element (TAR RNA) and allows Tat/P-TEFb complex to bind cooperatively to TAR RNA. The CDK9 component of P-TEFb and other Tat-activated kinases hyperphosphorylate the C-terminus of RNA Pol II that becomes stabilized and much more processive. Other factors such as HTATSF1/Tat-SF1, SUPT5H/SPT5, and HTATIP2 are also important for Tat's function. Besides its effect on RNA Pol II processivity, Tat induces chromatin remodeling of proviral genes by recruiting the histone acetyltransferases (HATs) CREBBP, EP300 and PCAF to the chromatin. This also contributes to the increase in proviral transcription rate, especially when the provirus integrates in transcriptionally silent region of the host genome. To ensure maximal activation of the LTR, Tat mediates nuclear translocation of NF-kappa-B. In this purpose, it activates EIF2AK2/PKR which, in turns, may phosphorylate and target to degradation the inhibitor IkappaB-alpha which normally retains NF-kappa-B in the cytoplasm of unstimulated cells. Through its interaction with TBP, Tat may be involved in transcription initiation as well. Interacts with the cellular capping enzyme RNGTT to mediate co-transcriptional capping of viral mRNAs. Tat protein exerts as well a positive feedback on the translation of its cognate mRNA. Tat can reactivate a latently infected cell by penetrating in it and transactivating its LTR promoter. In the cytoplasm, Tat is thought to act as a translational activator of HIV-1 mRNAs (By similarity).[26] Extracellular circulating Tat can be endocytosed by surrounding uninfected cells via the binding to several surface receptors such as CD26, CXCR4, heparan sulfate proteoglycans (HSPG) or LDLR. Neurons are rarely infected, but they internalize Tat via their LDLR. Endosomal low pH allows Tat to cross the endosome membrane to enter the cytosol and eventually further translocate into the nucleus, thereby inducing severe cell dysfunctions ranging from cell activation to cell death. Through its interaction with nuclear HATs, Tat is potentially able to control the acetylation-dependent cellular gene expression. Tat seems to inhibit the HAT activity of KAT5/Tip60 and TAF1, and consequently modify the expression of specific cellular genes. Modulates the expression of many cellular genes involved in cell survival, proliferation or in coding for cytokines (such as IL10) or cytokine receptors. May be involved in the derepression of host interleukin IL2 expression. Mediates the activation of cyclin-dependent kinases and dysregulation of microtubule network. Tat plays a role in T-cell and neurons apoptosis. Tat induced neurotoxicity and apoptosis probably contribute to neuroAIDS. Host extracellular matrix metalloproteinase MMP1 cleaves Tat and decreases Tat's mediated neurotoxicity. Circulating Tat also acts as a chemokine-like and/or growth factor-like molecule that binds to specific receptors on the surface of the cells, affecting many cellular pathways. In the vascular system, Tat binds to ITGAV/ITGB3 and ITGA5/ITGB1 integrins dimers at the surface of endothelial cells and competes with bFGF for heparin-binding sites, leading to an excess of soluble bFGF. Binds to KDR/VEGFR-2. All these Tat-mediated effects enhance angiogenesis in Kaposi's sarcoma lesions (By similarity).[27] [CCNT1_HUMAN] Regulatory subunit of the cyclin-dependent kinase pair (CDK9/cyclin-T1) complex, also called positive transcription elongation factor B (P-TEFb), which is proposed to facilitate the transition from abortive to productive elongation by phosphorylating the CTD (carboxy-terminal domain) of the large subunit of RNA polymerase II (RNA Pol II). In case of HIV or SIV infections, binds to the transactivation domain of the viral nuclear transcriptional activator, Tat, thereby increasing Tat's affinity for the transactivating response RNA element (TAR RNA). Serves as an essential cofactor for Tat, by promoting RNA Pol II activation, allowing transcription of viral genes. Publication Abstract from PubMedDeveloping anti-viral therapies targeting HIV-1 transcription has been hampered by the limited structural knowledge of the proteins involved. HIV-1 hijacks the cellular machinery that controls RNA polymerase II elongation through an interaction of HIV-1 Tat with the positive transcription elongation factor P-TEFb, which interacts with an AF4 family member (AFF1/2/3/4) in the super elongation complex (SEC). Because inclusion of Tat*P-TEFb into the SEC is critical for HIV transcription, we have determined the crystal structure of the Tat*AFF4*P-TEFb complex containing HIV-1 Tat (residues 1-48), human Cyclin T1 (1-266), human Cdk9 (7-332), and human AFF4 (27-69). Tat binding to AFF4*P-TEFb causes concerted structural changes in AFF4 via a shift of helix H5' of Cyclin T1 and the alpha-3 10 helix of AFF4. The interaction between Tat and AFF4 provides structural constraints that explain tolerated Tat mutations. Analysis of the Tat-binding surface of AFF4 coupled with modeling of all other AF4 family members suggests that AFF1 and AFF4 would be preferred over AFF2 or AFF3 for interaction with Tat*P-TEFb. The structure establishes that the Tat-TAR recognition motif (TRM) in Cyclin T1 interacts with both Tat and AFF4, leading to the exposure of arginine side chains for binding to TAR RNA. Furthermore, modeling of Tat Lys28 acetylation suggests that the acetyl group would be in a favorable position for H-bond formation with Asn257 of TRM, thereby stabilizing the TRM in Cyclin T1, and provides a structural basis for the modulation of TAR RNA binding by acetylation of Tat Lys28. Crystal structure of HIV-1 Tat complexed with human P-TEFb and AFF4.,Gu J, Babayeva ND, Suwa Y, Baranovskiy AG, Price DH, Tahirov TH Cell Cycle. 2014 Jun 1;13(11):1788-97. doi: 10.4161/cc.28756. Epub 2014 Apr 11. PMID:24727379[28] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|