5lab: Difference between revisions
m Protected "5lab" [edit=sysop:move=sysop] |
No edit summary |
||
Line 1: | Line 1: | ||
The | ==Crystal structure of the catalytic domain of human MMP12 complexed with the inhibitor NNGH== | ||
<StructureSection load='5lab' size='340' side='right' caption='[[5lab]], [[Resolution|resolution]] 1.34Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[5lab]] is a 1 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5LAB OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5LAB FirstGlance]. <br> | |||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=NGH:N-ISOBUTYL-N-[4-METHOXYPHENYLSULFONYL]GLYCYL+HYDROXAMIC+ACID'>NGH</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | |||
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Macrophage_elastase Macrophage elastase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.4.24.65 3.4.24.65] </span></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5lab FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5lab OCA], [http://pdbe.org/5lab PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5lab RCSB], [http://www.ebi.ac.uk/pdbsum/5lab PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5lab ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[[http://www.uniprot.org/uniprot/MMP12_HUMAN MMP12_HUMAN]] May be involved in tissue injury and remodeling. Has significant elastolytic activity. Can accept large and small amino acids at the P1' site, but has a preference for leucine. Aromatic or hydrophobic residues are preferred at the P1 site, with small hydrophobic residues (preferably alanine) occupying P3. | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
The structures of the catalytic domain of matrix metalloproteinase 12 in the presence of acetohydroxamic acid and N-isobutyl-N-[4-methoxyphenylsulfonyl]glycyl hydroxamic acid have been solved by x-ray diffraction in the crystalline state at 1.0 and 1.3-A resolution, respectively, and compared with the previously published x-ray structure at 1.2-A resolution of the adduct with batimastat. The structure of the N-isobutyl-N-[4-methoxyphenylsulfonyl]glycyl hydroxamic acid adduct has been solved by NMR in solution. The three x-ray structures and the solution structure are similar but not identical to one another, the differences being sizably higher in the loops. We propose that many of the loops show a dynamical behavior in solution on a variety of time scales. Different conformations of some flexible regions of the protein can be observed as "frozen" in different crystalline environments. The mobility in solution studied by NMR reveals conformational equilibria in accessible time scales, i.e., from 10(-5) s to ms and more. Averaging of some residual dipolar couplings is consistent with further motions down to 10(-9) s. Finally, local thermal motions of each frozen conformation in the crystalline state at 100 K correlate well with local motions on the picosecond time scale. Flexibility/conformational heterogeneity in crucial parts of the catalytic domain is a rule rather than an exception in matrix metalloproteinases, and its extent may be underestimated by inspection of one x-ray structure. Backbone flexibility may play a role in the difficulties encountered in the design of selective inhibitors, whereas it may be a requisite for substrate binding and broad substrate specificity. | |||
Conformational variability of matrix metalloproteinases: beyond a single 3D structure.,Bertini I, Calderone V, Cosenza M, Fragai M, Lee YM, Luchinat C, Mangani S, Terni B, Turano P Proc Natl Acad Sci U S A. 2005 Apr 12;102(15):5334-9. Epub 2005 Apr 4. PMID:15809432<ref>PMID:15809432</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
[[Category: | </div> | ||
<div class="pdbe-citations 5lab" style="background-color:#fffaf0;"></div> | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Macrophage elastase]] | |||
[[Category: Calderone, V]] | [[Category: Calderone, V]] | ||
[[Category: Luchinat, C]] | |||
[[Category: Ravera, E]] | [[Category: Ravera, E]] | ||
[[Category: | [[Category: Hydrolase]] | ||
[[Category: Hydrolase mmp-12]] |
Revision as of 19:07, 10 August 2016
Crystal structure of the catalytic domain of human MMP12 complexed with the inhibitor NNGHCrystal structure of the catalytic domain of human MMP12 complexed with the inhibitor NNGH
Structural highlights
Function[MMP12_HUMAN] May be involved in tissue injury and remodeling. Has significant elastolytic activity. Can accept large and small amino acids at the P1' site, but has a preference for leucine. Aromatic or hydrophobic residues are preferred at the P1 site, with small hydrophobic residues (preferably alanine) occupying P3. Publication Abstract from PubMedThe structures of the catalytic domain of matrix metalloproteinase 12 in the presence of acetohydroxamic acid and N-isobutyl-N-[4-methoxyphenylsulfonyl]glycyl hydroxamic acid have been solved by x-ray diffraction in the crystalline state at 1.0 and 1.3-A resolution, respectively, and compared with the previously published x-ray structure at 1.2-A resolution of the adduct with batimastat. The structure of the N-isobutyl-N-[4-methoxyphenylsulfonyl]glycyl hydroxamic acid adduct has been solved by NMR in solution. The three x-ray structures and the solution structure are similar but not identical to one another, the differences being sizably higher in the loops. We propose that many of the loops show a dynamical behavior in solution on a variety of time scales. Different conformations of some flexible regions of the protein can be observed as "frozen" in different crystalline environments. The mobility in solution studied by NMR reveals conformational equilibria in accessible time scales, i.e., from 10(-5) s to ms and more. Averaging of some residual dipolar couplings is consistent with further motions down to 10(-9) s. Finally, local thermal motions of each frozen conformation in the crystalline state at 100 K correlate well with local motions on the picosecond time scale. Flexibility/conformational heterogeneity in crucial parts of the catalytic domain is a rule rather than an exception in matrix metalloproteinases, and its extent may be underestimated by inspection of one x-ray structure. Backbone flexibility may play a role in the difficulties encountered in the design of selective inhibitors, whereas it may be a requisite for substrate binding and broad substrate specificity. Conformational variability of matrix metalloproteinases: beyond a single 3D structure.,Bertini I, Calderone V, Cosenza M, Fragai M, Lee YM, Luchinat C, Mangani S, Terni B, Turano P Proc Natl Acad Sci U S A. 2005 Apr 12;102(15):5334-9. Epub 2005 Apr 4. PMID:15809432[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References |
|