3ryj: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==Carbonic Anhydrase complexed with 4-sulfamoyl-N-(2,2,2-trifluoroethyl)benzamide== | ==Carbonic Anhydrase complexed with 4-sulfamoyl-N-(2,2,2-trifluoroethyl)benzamide== | ||
<StructureSection load='3ryj' size='340' side='right' caption='[[3ryj]], [[Resolution|resolution]] 1.39Å' scene=''> | <StructureSection load='3ryj' size='340' side='right' caption='[[3ryj]], [[Resolution|resolution]] 1.39Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[3ryj]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/ | <table><tr><td colspan='2'>[[3ryj]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3RYJ OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3RYJ FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=RYJ:4-SULFAMOYL-N-(2,2,2-TRIFLUOROETHYL)BENZAMIDE'>RYJ</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=RYJ:4-SULFAMOYL-N-(2,2,2-TRIFLUOROETHYL)BENZAMIDE'>RYJ</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | ||
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3ryv|3ryv]], [[3ryx|3ryx]], [[3ryy|3ryy]], [[3ryz|3ryz]], [[3rz0|3rz0]], [[3rz1|3rz1]], [[3rz5|3rz5]], [[3rz7|3rz7]], [[3rz8|3rz8]]</td></tr> | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3ryv|3ryv]], [[3ryx|3ryx]], [[3ryy|3ryy]], [[3ryz|3ryz]], [[3rz0|3rz0]], [[3rz1|3rz1]], [[3rz5|3rz5]], [[3rz7|3rz7]], [[3rz8|3rz8]]</td></tr> | ||
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">CA2 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">CA2 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr> | ||
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Carbonate_dehydratase Carbonate dehydratase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=4.2.1.1 4.2.1.1] </span></td></tr> | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Carbonate_dehydratase Carbonate dehydratase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=4.2.1.1 4.2.1.1] </span></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3ryj FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3ryj OCA], [http://www.rcsb.org/pdb/explore.do?structureId=3ryj RCSB], [http://www.ebi.ac.uk/pdbsum/3ryj PDBsum]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3ryj FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3ryj OCA], [http://pdbe.org/3ryj PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=3ryj RCSB], [http://www.ebi.ac.uk/pdbsum/3ryj PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=3ryj ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Disease == | == Disease == | ||
Line 21: | Line 22: | ||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
</div> | </div> | ||
<div class="pdbe-citations 3ryj" style="background-color:#fffaf0;"></div> | |||
==See Also== | ==See Also== | ||
Line 29: | Line 31: | ||
</StructureSection> | </StructureSection> | ||
[[Category: Carbonate dehydratase]] | [[Category: Carbonate dehydratase]] | ||
[[Category: | [[Category: Human]] | ||
[[Category: Bai, S]] | [[Category: Bai, S]] | ||
[[Category: Heroux, A]] | [[Category: Heroux, A]] |
Revision as of 01:00, 6 August 2016
Carbonic Anhydrase complexed with 4-sulfamoyl-N-(2,2,2-trifluoroethyl)benzamideCarbonic Anhydrase complexed with 4-sulfamoyl-N-(2,2,2-trifluoroethyl)benzamide
Structural highlights
Disease[CAH2_HUMAN] Defects in CA2 are the cause of osteopetrosis autosomal recessive type 3 (OPTB3) [MIM:259730]; also known as osteopetrosis with renal tubular acidosis, carbonic anhydrase II deficiency syndrome, Guibaud-Vainsel syndrome or marble brain disease. Osteopetrosis is a rare genetic disease characterized by abnormally dense bone, due to defective resorption of immature bone. The disorder occurs in two forms: a severe autosomal recessive form occurring in utero, infancy, or childhood, and a benign autosomal dominant form occurring in adolescence or adulthood. Autosomal recessive osteopetrosis is usually associated with normal or elevated amount of non-functional osteoclasts. OPTB3 is associated with renal tubular acidosis, cerebral calcification (marble brain disease) and in some cases with mental retardation.[1] [2] [3] [4] [5] Function[CAH2_HUMAN] Essential for bone resorption and osteoclast differentiation (By similarity). Reversible hydration of carbon dioxide. Can hydrate cyanamide to urea. Involved in the regulation of fluid secretion into the anterior chamber of the eye.[6] [7] Publication Abstract from PubMedThe hydrophobic effect-the free-energetically favorable association of non-polar solutes in water- makes a dominant contribution to binding of many systems of ligands and proteins. The objective of this study was to examine the hydrophobic effect in biomolecular recognition using two chemically different, but structurally similar hydrophobic groups-aliphatic hydrocarbons and aliphatic fluorocarbons-and to determine whether the hydrophobicity of the two groups could be distinguished by thermodynamic and biostructural analysis. This paper uses isothermal titration calorimetry (ITC) to examine the thermodynamics of binding of benzenesulfonamides substituted in the para position with alkyl and fluoroalkyl chains (H2NSO2C6H4-CONHCH2(CX2)nCX3, n = 0-4, X = H, F) to human carbonic anhydrase II (HCA II). Both alkyl and fluoroalkyl substituents contribute favorably to the enthalpy and the entropy of binding; these contributions increase as the length of chain of the hydrophobic substituent increases. Crystallography of the protein-ligand complexes indicates that the benzenesulfonamide groups of all ligands examined bind with similar geometry, that the tail groups associate with the hydrophobic wall of HCA II (which is made up of the side chains of residues Phe131, Val135, Pro202, and Leu204), and that the structure of the protein is indistinguishable for all but one of the complexes (the longest member of the fluoroalkyl series). Analysis of the thermodynamics of binding as a function of structure is compatible with the hypothesis that hydrophobic binding of both alkyl and fluoroalkyl chains to hydrophobic surface of carbonic anhydrase is due primarily to the release of non-optimally hydrogen-bonded water molecules that hydrate the binding cavity (including the hydrophobic wall) of HCA II and to the release of water molecules that surround the hydrophobic chain of the ligands. This study defines the balance of enthalpic and entropic contributions to the hydrophobic effect in this representative system of protein and ligand: hydrophobic interactions, here, seem to comprise approximately equal contributions from enthalpy (plausibly from strengthening networks among molecules of water hydrogen bonds) and entropy (from release of water from configurationally restricted positions). Fluoroalkyl and Alkyl Chains Have Similar Hydrophobicities in Binding to the Hydrophobic Wall of Carbonic Anhydrase.,Mecinovic J, Snyder PW, Mirica KA, Bai S, Mack ET, Kwant RL, Moustakas DT, Heroux A, Whitesides GM J Am Chem Soc. 2011 Jul 26. PMID:21790183[8] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|