3khb: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==Crystal structure of Escherichia coli AlkB with Co(II) and 2-OG== | ==Crystal structure of Escherichia coli AlkB with Co(II) and 2-OG== | ||
<StructureSection load='3khb' size='340' side='right' caption='[[3khb]], [[Resolution|resolution]] 2.90Å' scene=''> | <StructureSection load='3khb' size='340' side='right' caption='[[3khb]], [[Resolution|resolution]] 2.90Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[3khb]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/ | <table><tr><td colspan='2'>[[3khb]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Ecoli Ecoli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3KHB OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3KHB FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=AKG:2-OXOGLUTARIC+ACID'>AKG</scene>, <scene name='pdbligand=CO:COBALT+(II)+ION'>CO</scene></td></tr> | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=AKG:2-OXOGLUTARIC+ACID'>AKG</scene>, <scene name='pdbligand=CO:COBALT+(II)+ION'>CO</scene></td></tr> | ||
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3khc|3khc]]</td></tr> | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3khc|3khc]]</td></tr> | ||
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">aidD, alkB, b2212, JW2200 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=83333 | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">aidD, alkB, b2212, JW2200 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=83333 ECOLI])</td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3khb FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3khb OCA], [http://www.rcsb.org/pdb/explore.do?structureId=3khb RCSB], [http://www.ebi.ac.uk/pdbsum/3khb PDBsum]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3khb FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3khb OCA], [http://pdbe.org/3khb PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=3khb RCSB], [http://www.ebi.ac.uk/pdbsum/3khb PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=3khb ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
Line 18: | Line 19: | ||
<text>to colour the structure by Evolutionary Conservation</text> | <text>to colour the structure by Evolutionary Conservation</text> | ||
</jmolCheckbox> | </jmolCheckbox> | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=3khb ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
Line 28: | Line 29: | ||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
</div> | </div> | ||
<div class="pdbe-citations 3khb" style="background-color:#fffaf0;"></div> | |||
==See Also== | ==See Also== | ||
Line 35: | Line 37: | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: | [[Category: Ecoli]] | ||
[[Category: Holland, P J]] | [[Category: Holland, P J]] | ||
[[Category: Hollis, T]] | [[Category: Hollis, T]] |
Revision as of 22:25, 5 August 2016
Crystal structure of Escherichia coli AlkB with Co(II) and 2-OGCrystal structure of Escherichia coli AlkB with Co(II) and 2-OG
Structural highlights
Function[ALKB_ECOLI] Dioxygenase that repairs alkylated DNA and RNA containing 3-methylcytosine or 1-methyladenine by oxidative demethylation. Has highest activity towards 3-methylcytosine. Has lower activity towards alkylated DNA containing ethenoadenine, and no detectable activity towards 1-methylguanine or 3-methylthymine. Accepts double-stranded and single-stranded substrates. Requires molecular oxygen, alpha-ketoglutarate and iron. Provides extensive resistance to alkylating agents such as MMS and DMS (SN2 agents), but not to MMNG and MNU (SN1 agents).[1] [2] [3] [4] [5] [6] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedBACKGROUND: In Escherichia coli, cytotoxic DNA methyl lesions on the N1 position of purines and N3 position of pyrimidines are primarily repaired by the 2-oxoglutarate (2-OG) iron(II) dependent dioxygenase, AlkB. AlkB repairs 1-methyladenine (1-meA) and 3-methylcytosine (3-meC) lesions, but it also repairs 1-methylguanine (1-meG) and 3-methylthymine (3-meT) at a much less efficient rate. How the AlkB enzyme is able to locate and identify methylated bases in ssDNA has remained an open question. METHODOLOGY/PRINCIPAL FINDINGS: We determined the crystal structures of the E. coli AlkB protein holoenzyme and the AlkB-ssDNA complex containing a 1-meG lesion. We coupled this to site-directed mutagenesis of amino acids in and around the active site, and tested the effects of these mutations on the ability of the protein to bind both damaged and undamaged DNA, as well as catalyze repair of a methylated substrate. CONCLUSIONS/SIGNIFICANCE: A comparison of our substrate-bound AlkB-ssDNA complex with our unliganded holoenzyme reveals conformational changes of residues within the active site that are important for binding damaged bases. Site-directed mutagenesis of these residues reveals novel insight into their roles in DNA damage recognition and repair. Our data support a model that the AlkB protein utilizes at least two distinct conformations in searching and binding methylated bases within DNA: a "searching" mode and "repair" mode. Moreover, we are able to functionally separate these modes through mutagenesis of residues that affect one or the other binding state. Finally, our mutagenesis experiments show that amino acid D135 of AlkB participates in both substrate specificity and catalysis. Structural and mutational analysis of Escherichia coli AlkB provides insight into substrate specificity and DNA damage searching.,Holland PJ, Hollis T PLoS One. 2010 Jan 13;5(1):e8680. PMID:20084272[7] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|