4emk: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==Crystal structure of SpLsm5/6/7== | ==Crystal structure of SpLsm5/6/7== | ||
<StructureSection load='4emk' size='340' side='right' caption='[[4emk]], [[Resolution|resolution]] 2.30Å' scene=''> | <StructureSection load='4emk' size='340' side='right' caption='[[4emk]], [[Resolution|resolution]] 2.30Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[4emk]] is a 3 chain structure with sequence from [http://en.wikipedia.org/wiki/ | <table><tr><td colspan='2'>[[4emk]] is a 3 chain structure with sequence from [http://en.wikipedia.org/wiki/Fission_yeast Fission yeast]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4EMK OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4EMK FirstGlance]. <br> | ||
</td></tr><tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene></td></tr> | </td></tr><tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene></td></tr> | ||
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[4emg|4emg]], [[4emh|4emh]]</td></tr> | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[4emg|4emg]], [[4emh|4emh]]</td></tr> | ||
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">lsm5, SPBC20F10.09 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id= | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">lsm5, SPBC20F10.09 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=284812 Fission yeast]), lsm6, SPAC2F3.17c ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=284812 Fission yeast]), lsm7, SPCC285.12 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=284812 Fission yeast])</td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4emk FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4emk OCA], [http://www.rcsb.org/pdb/explore.do?structureId=4emk RCSB], [http://www.ebi.ac.uk/pdbsum/4emk PDBsum]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4emk FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4emk OCA], [http://pdbe.org/4emk PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4emk RCSB], [http://www.ebi.ac.uk/pdbsum/4emk PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=4emk ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
Line 18: | Line 19: | ||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
</div> | </div> | ||
<div class="pdbe-citations 4emk" style="background-color:#fffaf0;"></div> | |||
==See Also== | ==See Also== | ||
Line 25: | Line 27: | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: | [[Category: Fission yeast]] | ||
[[Category: Jiang, S M]] | [[Category: Jiang, S M]] | ||
[[Category: Song, H W]] | [[Category: Song, H W]] |
Revision as of 21:37, 5 August 2016
Crystal structure of SpLsm5/6/7Crystal structure of SpLsm5/6/7
Structural highlights
Function[LSM5_SCHPO] Component of LSm protein complexes, which are involved in RNA processing and may function in a chaperone-like manner. LSm5 is required for processing of pre-tRNAs, pre-rRNAs and U3 snoRNA (By similarity). [LSM7_SCHPO] Component of LSm protein complexes, which are involved in RNA processing and may function in a chaperone-like manner. Probable component of the spliceosome. [LSM6_SCHPO] Component of LSm protein complexes, which are involved in RNA processing and may function in a chaperone-like manner, facilitating the efficient association of RNA processing factors with their substrates. Component of the cytoplasmic LSM1-LSM7 complex, which is thought to be involved in mRNA degradation by activating the decapping step in the 5'-to-3' mRNA decay pathway. Component of the nuclear LSM2-LSM8 complex, which is involved in splicing of nuclear mRNAs. LSM2-LSM8 associates with multiple snRNP complexes containing the U6 snRNA (U4/U6 di-snRNP, spliceosomal U4/U6.U5 tri-snRNP, and free U6 snRNP). It binds directly to the 3'-terminal U-tract of U6 snRNA and plays a role in the biogenesis and stability of the U6 snRNP and U4/U6 snRNP complexes. LSM2-LSM8 probably also is involved degradation of nuclear pre-mRNA by targeting them for decapping, and in processing of pre-tRNAs, pre-rRNAs and U3 snoRNA (By similarity). Publication Abstract from PubMedSm-like (Lsm) proteins are ubiquitous and function in many aspects of RNA metabolism, including pre-mRNA splicing, nuclear RNA processing, mRNA decay and miRNA biogenesis. Here three crystal structures including Lsm3, Lsm4 and Lsm5/6/7 sub-complex from S. pombe are reported. These structures show that all the five individual Lsm subunits share a conserved Sm fold, and Lsm3, Lsm4, and Lsm5/6/7 form a heptamer, a trimer and a hexamer within the crystal lattice, respectively. Analytical ultracentrifugation indicates that Lsm3 and Lsm5/6/7 sub-complex exist in solution as a heptamer and a hexamer, respectively while Lsm4 undergoes a dynamic equilibrium between monomer and trimer in solution. RNA binding assays show that Lsm2/3 and Lsm5/6/7 bind to oligo(U) whereas no RNA binding is observed for Lsm3 and Lsm4. Analysis of the inter-subunit interactions in Lsm5/6/7 reveals the organization order among Lsm5, Lsm6 and Lsm7. Crystal Structures of Lsm3, Lsm4 and Lsm5/6/7 from Schizosaccharomyces pombe.,Wu D, Jiang S, Bowler MW, Song H PLoS One. 2012;7(5):e36768. Epub 2012 May 17. PMID:22615807[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|