4f09: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==Discovery and Optimization of C-2 Methyl Imidazo-pyrrolopyridines as Potent and Orally Bioavailable JAK1 Inhibitors with Selectivity over JAK2== | ==Discovery and Optimization of C-2 Methyl Imidazo-pyrrolopyridines as Potent and Orally Bioavailable JAK1 Inhibitors with Selectivity over JAK2== | ||
<StructureSection load='4f09' size='340' side='right' caption='[[4f09]], [[Resolution|resolution]] 2.40Å' scene=''> | <StructureSection load='4f09' size='340' side='right' caption='[[4f09]], [[Resolution|resolution]] 2.40Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[4f09]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/ | <table><tr><td colspan='2'>[[4f09]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4F09 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4F09 FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=JAK:2-METHYL-1-(PIPERIDIN-4-YL)-1,6-DIHYDROIMIDAZO[4,5-D]PYRROLO[2,3-B]PYRIDINE'>JAK</scene></td></tr> | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=JAK:2-METHYL-1-(PIPERIDIN-4-YL)-1,6-DIHYDROIMIDAZO[4,5-D]PYRROLO[2,3-B]PYRIDINE'>JAK</scene></td></tr> | ||
<tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=PTR:O-PHOSPHOTYROSINE'>PTR</scene></td></tr> | <tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=PTR:O-PHOSPHOTYROSINE'>PTR</scene></td></tr> | ||
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[4f08|4f08]], [[4ei4|4ei4]], [[4ehz|4ehz]]</td></tr> | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[4f08|4f08]], [[4ei4|4ei4]], [[4ehz|4ehz]]</td></tr> | ||
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">JAK2 kinase domain ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">JAK2 kinase domain ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr> | ||
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Non-specific_protein-tyrosine_kinase Non-specific protein-tyrosine kinase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.10.2 2.7.10.2] </span></td></tr> | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Non-specific_protein-tyrosine_kinase Non-specific protein-tyrosine kinase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.10.2 2.7.10.2] </span></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4f09 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4f09 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=4f09 RCSB], [http://www.ebi.ac.uk/pdbsum/4f09 PDBsum]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4f09 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4f09 OCA], [http://pdbe.org/4f09 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4f09 RCSB], [http://www.ebi.ac.uk/pdbsum/4f09 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=4f09 ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Disease == | == Disease == | ||
Line 22: | Line 23: | ||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
</div> | </div> | ||
<div class="pdbe-citations 4f09" style="background-color:#fffaf0;"></div> | |||
==See Also== | ==See Also== | ||
Line 29: | Line 31: | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: | [[Category: Human]] | ||
[[Category: Non-specific protein-tyrosine kinase]] | [[Category: Non-specific protein-tyrosine kinase]] | ||
[[Category: Murray, J M]] | [[Category: Murray, J M]] |
Revision as of 21:35, 5 August 2016
Discovery and Optimization of C-2 Methyl Imidazo-pyrrolopyridines as Potent and Orally Bioavailable JAK1 Inhibitors with Selectivity over JAK2Discovery and Optimization of C-2 Methyl Imidazo-pyrrolopyridines as Potent and Orally Bioavailable JAK1 Inhibitors with Selectivity over JAK2
Structural highlights
Disease[JAK2_HUMAN] Note=Chromosomal aberrations involving JAK2 are found in both chronic and acute forms of eosinophilic, lymphoblastic and myeloid leukemia. Translocation t(8;9)(p22;p24) with PCM1 links the protein kinase domain of JAK2 to the major portion of PCM1. Translocation t(9;12)(p24;p13) with ETV6. Defects in JAK2 are a cause of susceptibility to Budd-Chiari syndrome (BDCHS) [MIM:600880]. A syndrome caused by obstruction of hepatic venous outflow involving either the hepatic veins or the terminal segment of the inferior vena cava. Obstructions are generally caused by thrombosis and lead to hepatic congestion and ischemic necrosis. Clinical manifestations observed in the majority of patients include hepatomegaly, right upper quadrant pain and abdominal ascites. Budd-Chiari syndrome is associated with a combination of disease states including primary myeloproliferative syndromes and thrombophilia due to factor V Leiden, protein C deficiency and antithrombin III deficiency. Budd-Chiari syndrome is a rare but typical complication in patients with polycythemia vera. Defects in JAK2 are a cause of polycythemia vera (PV) [MIM:263300]. A myeloproliferative disorder characterized by abnormal proliferation of all hematopoietic bone marrow elements, erythroid hyperplasia, an absolute increase in total blood volume, but also by myeloid leukocytosis, thrombocytosis and splenomegaly.[1] [2] [3] [4] Defects in JAK2 gene may be the cause of thrombocythemia type 3 (THCYT3) [MIM:614521]. A myeloproliferative disorder characterized by elevated platelet levels due to sustained proliferation of megakaryocytes, and frequently lead to thrombotic and haemorrhagic complications.[5] [6] Defects in JAK2 are a cause of myelofibrosis (MYELOF) [MIM:254450]. Myelofibrosis is a disorder characterized by replacement of the bone marrow by fibrous tissue, occurring in association with a myeloproliferative disorder. Clinical manifestations may include anemia, pallor, splenomegaly, hypermetabolic state, petechiae, ecchymosis, bleeding, lymphadenopathy, hepatomegaly, portal hypertension. Defects in JAK2 are a cause of acute myelogenous leukemia (AML) [MIM:601626]. AML is a malignant disease in which hematopoietic precursors are arrested in an early stage of development.[7] Function[JAK2_HUMAN] Non-receptor tyrosine kinase involved in various processes such as cell growth, development, differentiation or histone modifications. Mediates essential signaling events in both innate and adaptive immunity. In the cytoplasm, plays a pivotal role in signal transduction via its association with type I receptors such as growth hormone (GHR), prolactin (PRLR), leptin (LEPR), erythropoietin (EPOR), thrombopoietin (THPO); or type II receptors including IFN-alpha, IFN-beta, IFN-gamma and multiple interleukins. Following ligand-binding to cell surface receptors, phosphorylates specific tyrosine residues on the cytoplasmic tails of the receptor, creating docking sites for STATs proteins. Subsequently, phosphorylates the STATs proteins once they are recruited to the receptor. Phosphorylated STATs then form homodimer or heterodimers and translocate to the nucleus to activate gene transcription. For example, cell stimulation with erythropoietin (EPO) during erythropoiesis leads to JAK2 autophosphorylation, activation, and its association with erythropoietin receptor (EPOR) that becomes phosphorylated in its cytoplasmic domain. Then, STAT5 (STAT5A or STAT5B) is recruited, phosphorylated and activated by JAK2. Once activated, dimerized STAT5 translocates into the nucleus and promotes the transcription of several essential genes involved in the modulation of erythropoiesis. In addition, JAK2 mediates angiotensin-2-induced ARHGEF1 phosphorylation. Plays a role in cell cycle by phosphorylating CDKN1B. Cooperates with TEC through reciprocal phosphorylation to mediate cytokine-driven activation of FOS transcription. In the nucleus, plays a key role in chromatin by specifically mediating phosphorylation of 'Tyr-41' of histone H3 (H3Y41ph), a specific tag that promotes exclusion of CBX5 (HP1 alpha) from chromatin.[8] [9] [10] [11] Publication Abstract from PubMedHerein we report the discovery of the C-2 methyl substituted imidazopyrrolopyridine series and its optimization to provide potent and orally bioavailable JAK1 inhibitors with selectivity over JAK2. The C-2 methyl substituted inhibitor 4 exhibited not only improved JAK1 potency relative to unsubstituted compound 3 but also notable JAK1 vs JAK2 selectivity (20-fold and >33-fold in biochemical and cell-based assays, respectively). Features of the X-ray structures of 4 in complex with both JAK1 and JAK2 are delineated. Efforts to improve the in vitro and in vivo ADME properties of 4 while maintaining JAK1 selectivity are described, culminating in the discovery of a highly optimized and balanced inhibitor (20). Details of the biological characterization of 20 are disclosed including JAK1 vs JAK2 selectivity levels, preclinical in vivo PK profiles, performance in an in vivo JAK1-mediated PK/PD model, and attributes of an X-ray structure in complex with JAK1. Discovery and Optimization of C-2 Methyl Imidazopyrrolopyridines as Potent and Orally Bioavailable JAK1 Inhibitors with Selectivity over JAK2.,Zak M, Mendonca R, Balazs M, Barrett K, Bergeron P, Blair WS, Chang C, Deshmukh G, Devoss J, Dragovich PS, Eigenbrot C, Ghilardi N, Gibbons P, Gradl S, Hamman C, Hanan EJ, Harstad E, Hewitt PR, Hurley CA, Jin T, Johnson A, Johnson T, Kenny JR, Koehler MF, Bir Kohli P, Kulagowski JJ, Labadie S, Liao J, Liimatta M, Lin Z, Lupardus PJ, Maxey RJ, Murray JM, Pulk R, Rodriguez M, Savage S, Shia S, Steffek M, Ubhayakar S, Ultsch M, van Abbema A, Ward SI, Xiao L, Xiao Y J Med Chem. 2012 Jun 28. PMID:22698084[12] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|