4npn: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==Crystal structure of human tetra-SUMO-2== | ==Crystal structure of human tetra-SUMO-2== | ||
<StructureSection load='4npn' size='340' side='right' caption='[[4npn]], [[Resolution|resolution]] 1.63Å' scene=''> | <StructureSection load='4npn' size='340' side='right' caption='[[4npn]], [[Resolution|resolution]] 1.63Å' scene=''> | ||
Line 4: | Line 5: | ||
<table><tr><td colspan='2'>[[4npn]] is a 1 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4NPN OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4NPN FirstGlance]. <br> | <table><tr><td colspan='2'>[[4npn]] is a 1 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4NPN OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4NPN FirstGlance]. <br> | ||
</td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[4bkg|4bkg]], [[1wm2|1wm2]], [[1wm3|1wm3]], [[2rpq|2rpq]]</td></tr> | </td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[4bkg|4bkg]], [[1wm2|1wm2]], [[1wm3|1wm3]], [[2rpq|2rpq]]</td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4npn FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4npn OCA], [http://www.rcsb.org/pdb/explore.do?structureId=4npn RCSB], [http://www.ebi.ac.uk/pdbsum/4npn PDBsum]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4npn FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4npn OCA], [http://pdbe.org/4npn PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4npn RCSB], [http://www.ebi.ac.uk/pdbsum/4npn PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=4npn ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
Line 16: | Line 17: | ||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
</div> | </div> | ||
<div class="pdbe-citations 4npn" style="background-color:#fffaf0;"></div> | |||
==See Also== | |||
*[[SUMO|SUMO]] | |||
== References == | == References == | ||
<references/> | <references/> |
Revision as of 10:29, 5 August 2016
Crystal structure of human tetra-SUMO-2Crystal structure of human tetra-SUMO-2
Structural highlights
Function[SUMO2_HUMAN] Ubiquitin-like protein that can be covalently attached to proteins as a monomer or as a lysine-linked polymer. Covalent attachment via an isopeptide bond to its substrates requires prior activation by the E1 complex SAE1-SAE2 and linkage to the E2 enzyme UBE2I, and can be promoted by an E3 ligase such as PIAS1-4, RANBP2 or CBX4. This post-translational modification on lysine residues of proteins plays a crucial role in a number of cellular processes such as nuclear transport, DNA replication and repair, mitosis and signal transduction. Polymeric SUMO2 chains are also susceptible to polyubiquitination which functions as a signal for proteasomal degradation of modified proteins.[1] [2] [3] Publication Abstract from PubMedThe E3 ubiquitin ligase RNF4 (RING finger protein 4) contains four tandem SIM [SUMO (small ubiquitin-like modifier)-interaction motif] repeats for selective interaction with poly-SUMO-modified proteins, which it targets for degradation. We employed a multi-faceted approach to characterize the structure of the RNF4-SIMs domain and the tetra-SUMO2 chain to elucidate the interaction between them. In solution, the SIM domain was intrinsically disordered and the linkers of the tetra-SUMO2 were highly flexible. Individual SIMs of the RNF4-SIMs domains bind to SUMO2 in the groove between the beta2-strand and the alpha1-helix parallel to the beta2-strand. SIM2 and SIM3 bound to SUMO with a high affinity and together constituted the recognition module necessary for SUMO binding. SIM4 alone bound to SUMO with low affinity; however, its contribution to tetra-SUMO2 binding avidity is comparable with that of SIM3 when in the RNF4-SIMs domain. The SAXS data of the tetra-SUMO2-RNF4-SIMs domain complex indicate that it exists as an ordered structure. The HADDOCK model showed that the tandem RNF4-SIMs domain bound antiparallel to the tetra-SUMO2 chain orientation and wrapped around the SUMO protamers in a superhelical turn without imposing steric hindrance on either molecule. Structural analysis of poly-SUMO chain recognition by the RNF4-SIMs domain.,Kung CC, Naik MT, Wang SH, Shih HM, Chang CC, Lin LY, Chen CL, Ma C, Chang CF, Huang TH Biochem J. 2014 Aug 15;462(1):53-65. doi: 10.1042/BJ20140521. PMID:24844634[4] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|