1at3: Difference between revisions
No edit summary |
No edit summary |
||
Line 23: | Line 23: | ||
[[Category: viral protease]] | [[Category: viral protease]] | ||
''Page seeded by [http://ispc.weizmann.ac.il/oca OCA ] on Mon Nov 5 | ''Page seeded by [http://ispc.weizmann.ac.il/oca OCA ] on Mon Nov 5 15:50:56 2007'' |
Revision as of 16:45, 5 November 2007
|
HERPES SIMPLEX VIRUS TYPE II PROTEASE
OverviewOverview
Human herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) are, responsible for herpes labialis (cold sores) and genital herpes, respectively. They encode a serine protease that is required for viral, replication, and represent a viable target for therapeutic intervention., Here, we report the crystal structures of HSV-1 and HSV-2 proteases, the, latter in the presence and absence of the covalently bound transition, state analog inhibitor diisopropyl phosphate (DIP). The HSV-1 and HSV-2, protease structures show a fold that is neither like chymotrypsin nor like, subtilisin, and has been seen only in the recently determined, cytomegalovirus (CMV) and varicella-zoster virus (VZV) protease, structures. HSV-1 and HSV-2 proteases share high sequence homology and, have almost identical three-dimensional structures. However, structural, differences are observed with the less homologous CMV protease, offering a, structural basis for herpes virus protease ligand specificity. The bound, inhibitor identifies the oxyanion hole of these enzymes and defines the, active site cavity.
About this StructureAbout this Structure
1AT3 is a Single protein structure of sequence from Human herpesvirus 1 with DFP as ligand. Structure known Active Site: ACT. Full crystallographic information is available from OCA.
ReferenceReference
Active site cavity of herpesvirus proteases revealed by the crystal structure of herpes simplex virus protease/inhibitor complex., Hoog SS, Smith WW, Qiu X, Janson CA, Hellmig B, McQueney MS, O'Donnell K, O'Shannessy D, DiLella AG, Debouck C, Abdel-Meguid SS, Biochemistry. 1997 Nov 18;36(46):14023-9. PMID:9369473
Page seeded by OCA on Mon Nov 5 15:50:56 2007