2v37: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==SOLUTION STRUCTURE OF THE N-TERMINAL EXTRACELLULAR DOMAIN OF HUMAN T-CADHERIN== | ==SOLUTION STRUCTURE OF THE N-TERMINAL EXTRACELLULAR DOMAIN OF HUMAN T-CADHERIN== | ||
<StructureSection load='2v37' size='340' side='right' caption='[[2v37]], [[NMR_Ensembles_of_Models | 20 NMR models]]' scene=''> | <StructureSection load='2v37' size='340' side='right' caption='[[2v37]], [[NMR_Ensembles_of_Models | 20 NMR models]]' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[2v37]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/ | <table><tr><td colspan='2'>[[2v37]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2V37 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2V37 FirstGlance]. <br> | ||
</td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2v37 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2v37 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2v37 RCSB], [http://www.ebi.ac.uk/pdbsum/2v37 PDBsum]</span></td></tr> | </td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2v37 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2v37 OCA], [http://pdbe.org/2v37 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=2v37 RCSB], [http://www.ebi.ac.uk/pdbsum/2v37 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=2v37 ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
Line 15: | Line 16: | ||
<text>to colour the structure by Evolutionary Conservation</text> | <text>to colour the structure by Evolutionary Conservation</text> | ||
</jmolCheckbox> | </jmolCheckbox> | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2v37 ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
Line 25: | Line 26: | ||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
</div> | </div> | ||
<div class="pdbe-citations 2v37" style="background-color:#fffaf0;"></div> | |||
==See Also== | ==See Also== | ||
Line 32: | Line 34: | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: | [[Category: Human]] | ||
[[Category: Ahrens, T]] | [[Category: Ahrens, T]] | ||
[[Category: Bang, E J]] | [[Category: Bang, E J]] |
Revision as of 03:01, 5 August 2016
SOLUTION STRUCTURE OF THE N-TERMINAL EXTRACELLULAR DOMAIN OF HUMAN T-CADHERINSOLUTION STRUCTURE OF THE N-TERMINAL EXTRACELLULAR DOMAIN OF HUMAN T-CADHERIN
Structural highlights
Function[CAD13_HUMAN] Cadherins are calcium-dependent cell adhesion proteins. They preferentially interact with themselves in a homophilic manner in connecting cells; cadherins may thus contribute to the sorting of heterogeneous cell types. May act as a negative regulator of neural cell growth.[1] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedT-cadherin is unique among the family of type I cadherins, because it lacks transmembrane and cytosolic domains, and attaches to the membrane via a glycophosphoinositol anchor. The N-terminal cadherin repeat of T-cadherin (Tcad1) is approximately 30% identical to E-, N-, and other classical cadherins. However, it lacks many amino acids crucial for their adhesive function of classical cadherins. Among others, Trp-2, which is the key residue forming the canonical strand-exchange dimer, is replaced by an isoleucine. Here, we report the NMR structure of the first cadherin repeat of T-cadherin (Tcad1). Tcad1, as other cadherin domains, adopts a beta-barrel structure with a Greek key folding topology. However, Tcad1 is monomeric in the absence and presence of calcium. Accordingly, lle-2 binds into a hydrophobic pocket on the same protomer and participates in an N-terminal beta-sheet. Specific amino acid replacements compared to classical cadherins reduce the size of the binding pocket for residue 2 and alter the backbone conformation and flexibility around residues 5 and 15 as well as many electrostatic interactions. These modifications apparently stabilize the monomeric form and make it less susceptible to a conformational switch upon calcium binding. The absence of a tendency for homoassociation observed by NMR is consistent with electron microscopy and solid-phase binding data of the full T-cadherin ectodomain (Tcad1-5). The apparent low adhesiveness of T-cadherin suggests that it is likely to be involved in reversible and dynamic cellular adhesion-deadhesion processes, which are consistent with its role in cell growth and migration. Insights into the low adhesive capacity of human T-cadherin from the NMR structure of Its N-terminal extracellular domain.,Dames SA, Bang E, Haussinger D, Ahrens T, Engel J, Grzesiek S J Biol Chem. 2008 Aug 22;283(34):23485-95. Epub 2008 Jun 10. PMID:18550521[2] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|