4d03: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
==Structure of the Cys65Asp mutant of phenylacetone monooxygenase: oxidised state==
==Structure of the Cys65Asp mutant of phenylacetone monooxygenase: oxidised state==
<StructureSection load='4d03' size='340' side='right' caption='[[4d03]], [[Resolution|resolution]] 1.81&Aring;' scene=''>
<StructureSection load='4d03' size='340' side='right' caption='[[4d03]], [[Resolution|resolution]] 1.81&Aring;' scene=''>
Line 6: Line 7:
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[4czz|4czz]], [[4d04|4d04]]</td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[4czz|4czz]], [[4d04|4d04]]</td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Phenylacetone_monooxygenase Phenylacetone monooxygenase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.14.13.92 1.14.13.92] </span></td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Phenylacetone_monooxygenase Phenylacetone monooxygenase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.14.13.92 1.14.13.92] </span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4d03 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4d03 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=4d03 RCSB], [http://www.ebi.ac.uk/pdbsum/4d03 PDBsum]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4d03 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4d03 OCA], [http://pdbe.org/4d03 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4d03 RCSB], [http://www.ebi.ac.uk/pdbsum/4d03 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=4d03 ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
Line 18: Line 19:
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
</div>
<div class="pdbe-citations 4d03" style="background-color:#fffaf0;"></div>
== References ==
== References ==
<references/>
<references/>

Revision as of 01:41, 5 August 2016

Structure of the Cys65Asp mutant of phenylacetone monooxygenase: oxidised stateStructure of the Cys65Asp mutant of phenylacetone monooxygenase: oxidised state

Structural highlights

4d03 is a 1 chain structure. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:, ,
Activity:Phenylacetone monooxygenase, with EC number 1.14.13.92
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

[PAMO_THEFY] Catalyzes a Baeyer-Villiger oxidation reaction, i.e. the insertion of an oxygen atom into a carbon-carbon bond adjacent to a carbonyl, which converts ketones to esters. Is most efficient with phenylacetone as substrate, leading to the formation of benzyl acetate. Can also oxidize other aromatic ketones (benzylacetone, alpha-methylphenylacetone and 4-hydroxyacetophenone), some aliphatic ketones (dodecan-2-one and bicyclohept-2-en-6-one) and sulfides (e.g. methyl 4-tolylsulfide).

Publication Abstract from PubMed

By a targeted enzyme engineering approach, we were able to create an efficient NADPH oxidase from a monooxygenase. Intriguingly, replacement of only one specific single amino acid was sufficient for such a monooxygenase-to-oxidase switch-a complete transition in enzyme activity. Pre-steady-state kinetic analysis and elucidation of the crystal structure of the C65D PAMO mutant revealed that the mutation introduces small changes near the flavin cofactor, resulting in a rapid decay of the peroxyflavin intermediate. The engineered biocatalyst was shown to be a thermostable, solvent tolerant, and effective cofactor-regenerating biocatalyst. Therefore, it represents a valuable new biocatalytic tool.

Finding the Switch: Turning a Baeyer-Villiger Monooxygenase into a NADPH Oxidase.,Brondani PB, Dudek HM, Martinoli C, Mattevi A, Fraaije MW J Am Chem Soc. 2014 Dec 1. PMID:25423359[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Brondani PB, Dudek HM, Martinoli C, Mattevi A, Fraaije MW. Finding the Switch: Turning a Baeyer-Villiger Monooxygenase into a NADPH Oxidase. J Am Chem Soc. 2014 Dec 1. PMID:25423359 doi:http://dx.doi.org/10.1021/ja508265b

4d03, resolution 1.81Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA