3dfs: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==Dihydroxyacetone phosphate Schiff base intermediate in D33S mutant fructose-1,6-bisphosphate aldolase from rabbit muscle== | ==Dihydroxyacetone phosphate Schiff base intermediate in D33S mutant fructose-1,6-bisphosphate aldolase from rabbit muscle== | ||
<StructureSection load='3dfs' size='340' side='right' caption='[[3dfs]], [[Resolution|resolution]] 2.03Å' scene=''> | <StructureSection load='3dfs' size='340' side='right' caption='[[3dfs]], [[Resolution|resolution]] 2.03Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[3dfs]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/ | <table><tr><td colspan='2'>[[3dfs]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/European_rabbit European rabbit]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3DFS OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3DFS FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=13P:1,3-DIHYDROXYACETONEPHOSPHATE'>13P</scene></td></tr> | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=13P:1,3-DIHYDROXYACETONEPHOSPHATE'>13P</scene></td></tr> | ||
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3dfn|3dfn]], [[3dfo|3dfo]], [[3dfp|3dfp]], [[3dfq|3dfq]], [[3dft|3dft]]</td></tr> | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3dfn|3dfn]], [[3dfo|3dfo]], [[3dfp|3dfp]], [[3dfq|3dfq]], [[3dft|3dft]]</td></tr> | ||
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">ALDOA ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9986 | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">ALDOA ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9986 European rabbit])</td></tr> | ||
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Fructose-bisphosphate_aldolase Fructose-bisphosphate aldolase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=4.1.2.13 4.1.2.13] </span></td></tr> | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Fructose-bisphosphate_aldolase Fructose-bisphosphate aldolase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=4.1.2.13 4.1.2.13] </span></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3dfs FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3dfs OCA], [http://www.rcsb.org/pdb/explore.do?structureId=3dfs RCSB], [http://www.ebi.ac.uk/pdbsum/3dfs PDBsum]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3dfs FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3dfs OCA], [http://pdbe.org/3dfs PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=3dfs RCSB], [http://www.ebi.ac.uk/pdbsum/3dfs PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=3dfs ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
Line 19: | Line 20: | ||
<text>to colour the structure by Evolutionary Conservation</text> | <text>to colour the structure by Evolutionary Conservation</text> | ||
</jmolCheckbox> | </jmolCheckbox> | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=3dfs ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
Line 29: | Line 30: | ||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
</div> | </div> | ||
<div class="pdbe-citations 3dfs" style="background-color:#fffaf0;"></div> | |||
==See Also== | ==See Also== | ||
Line 36: | Line 38: | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: European rabbit]] | |||
[[Category: Fructose-bisphosphate aldolase]] | [[Category: Fructose-bisphosphate aldolase]] | ||
[[Category: St-Jean, M]] | [[Category: St-Jean, M]] | ||
[[Category: Sygusch, J]] | [[Category: Sygusch, J]] |
Revision as of 01:28, 5 August 2016
Dihydroxyacetone phosphate Schiff base intermediate in D33S mutant fructose-1,6-bisphosphate aldolase from rabbit muscleDihydroxyacetone phosphate Schiff base intermediate in D33S mutant fructose-1,6-bisphosphate aldolase from rabbit muscle
Structural highlights
Function[ALDOA_RABIT] Plays a key role in glycolysis and gluconeogenesis. In addition, may also function as scaffolding protein.[1] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedFructose-1,6-bisphosphate muscle aldolase is an essential glycolytic enzyme that catalyzes reversible carbon-carbon bond formation by cleaving fructose 1,6-bisphosphate to yield dihydroxyacetone phosphate (DHAP) and d-glyceraldehyde phosphate. To elucidate the mechanistic role of conserved amino acid Asp-33, Asn-33 and Ser-33 mutants were examined by kinetic and structural analyses. The mutations significantly compromised enzymatic activity and carbanion oxidation in presence of DHAP. Detailed structural analysis demonstrated that, like native crystals, Asp-33 mutant crystals, soaked in DHAP solutions, trapped Schiff base-derived intermediates covalently attached to Lys-229. The mutant structures, however, exhibited an abridged conformational change with the helical region (34-65) flanking the active site as well as pK(a) reductions and increased side chain disorder by central lysine residues, Lys-107 and Lys-146. These changes directly affect their interaction with the C-terminal Tyr-363, consistent with the absence of active site binding by the C-terminal region in the presence of phosphate. Lys-146 pK(a) reduction and side chain disorder would further compromise charge stabilization during C-C bond cleavage and proton transfer during enamine formation. These mechanistic impediments explain diminished catalytic activity and a reduced level of carbanion oxidation and are consistent with rate-determining proton transfer observed in the Asn-33 mutant. Asp-33 reduces the entropic cost and augments the enthalpic gain during catalysis by rigidifying Lys-107 and Lys-146, stabilizing their protonated forms, and promoting a conformational change triggered by substrate or obligate product binding, which lower kinetic barriers in C-C bond cleavage and Schiff base-enamine interconversion. Charge Stabilization and Entropy Reduction of Central Lysine Residues in Fructose-Bisphosphate Aldolase.,St-Jean M, Blonski C, Sygusch J Biochemistry. 2009 Apr 22. PMID:19354220[2] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|