4mv5: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==IspH in complex with 6-chloropyridin-3-ylmethyl diphosphate== | ==IspH in complex with 6-chloropyridin-3-ylmethyl diphosphate== | ||
<StructureSection load='4mv5' size='340' side='right' caption='[[4mv5]], [[Resolution|resolution]] 1.90Å' scene=''> | <StructureSection load='4mv5' size='340' side='right' caption='[[4mv5]], [[Resolution|resolution]] 1.90Å' scene=''> | ||
Line 6: | Line 7: | ||
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3ke8|3ke8]], [[3dnf|3dnf]], [[3f7t|3f7t]], [[4mux|4mux]], [[4muy|4muy]], [[4mv0|4mv0]]</td></tr> | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3ke8|3ke8]], [[3dnf|3dnf]], [[3f7t|3f7t]], [[4mux|4mux]], [[4muy|4muy]], [[4mv0|4mv0]]</td></tr> | ||
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/4-hydroxy-3-methylbut-2-enyl_diphosphate_reductase 4-hydroxy-3-methylbut-2-enyl diphosphate reductase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.17.1.2 1.17.1.2] </span></td></tr> | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/4-hydroxy-3-methylbut-2-enyl_diphosphate_reductase 4-hydroxy-3-methylbut-2-enyl diphosphate reductase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.17.1.2 1.17.1.2] </span></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4mv5 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4mv5 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=4mv5 RCSB], [http://www.ebi.ac.uk/pdbsum/4mv5 PDBsum]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4mv5 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4mv5 OCA], [http://pdbe.org/4mv5 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4mv5 RCSB], [http://www.ebi.ac.uk/pdbsum/4mv5 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=4mv5 ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
Line 18: | Line 19: | ||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
</div> | </div> | ||
<div class="pdbe-citations 4mv5" style="background-color:#fffaf0;"></div> | |||
==See Also== | ==See Also== |
Revision as of 23:19, 4 August 2016
IspH in complex with 6-chloropyridin-3-ylmethyl diphosphateIspH in complex with 6-chloropyridin-3-ylmethyl diphosphate
Structural highlights
Function[C9QSC3_ECOD1] Converts 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate into isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) (By similarity).[SAAS:SAAS003451_004_011514][HAMAP-Rule:MF_00191] Publication Abstract from PubMed(E)-1-Hydroxy-2-methylbut-2-enyl 4-diphosphate reductase (IspH) is a [Fe4S4] cluster-containing enzyme involved in isoprenoid biosynthesis in many bacteria as well as in malaria parasites and is an important drug target. Several inhibitors including amino and thiol substrate analogues, as well as acetylene and pyridine diphosphates, have been reported. Here, we investigate the mode of binding of four pyridine diphosphates to Escherichia coli IspH by using X-ray crystallography. In three cases, one of the iron atoms in the cluster is absent, but in the structure with (pyridin-3-yl)methyl diphosphate, the most potent pyridine-analogue inhibitor reported previously, the fourth iron of the [Fe4S4] cluster is present and interacts with the pyridine ring of the ligand. Based on the results of quantum chemical calculations together with the crystallographic results we propose a side-on eta2 coordination of the nitrogen and the carbon in the 2-position of the pyridine ring to the unique fourth iron in the cluster, which is in the reduced state. The X-ray structure enables excellent predictions using density functional theory of the 14N hyperfine coupling and quadrupole coupling constants reported previously using HYSCORE spectroscopy, as well as providing a further example of the ability of such [Fe4S4]-containing proteins to form organometallic complexes. Insights into the Binding of Pyridines to the Iron-Sulfur Enzyme IspH.,Span I, Wang K, Eisenreich W, Bacher A, Zhang Y, Oldfield E, Groll M J Am Chem Soc. 2014 May 22. PMID:24813236[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|