1kqv: Difference between revisions
No edit summary |
No edit summary |
||
Line 4: | Line 4: | ||
|PDB= 1kqv |SIZE=350|CAPTION= <scene name='initialview01'>1kqv</scene> | |PDB= 1kqv |SIZE=350|CAPTION= <scene name='initialview01'>1kqv</scene> | ||
|SITE= | |SITE= | ||
|LIGAND= <scene name='pdbligand=LA:LANTHANUM (III) ION'>LA</scene> | |LIGAND= <scene name='pdbligand=LA:LANTHANUM+(III)+ION'>LA</scene> | ||
|ACTIVITY= | |ACTIVITY= | ||
|GENE= | |GENE= | ||
|DOMAIN= | |||
|RELATEDENTRY=[[1k31|1k31]] | |||
|RESOURCES=<span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1kqv FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1kqv OCA], [http://www.ebi.ac.uk/pdbsum/1kqv PDBsum], [http://www.rcsb.org/pdb/explore.do?structureId=1kqv RCSB]</span> | |||
}} | }} | ||
Line 29: | Line 32: | ||
[[Category: Piccioli, M.]] | [[Category: Piccioli, M.]] | ||
[[Category: Poggi, L.]] | [[Category: Poggi, L.]] | ||
[[Category: calcium binding protein]] | [[Category: calcium binding protein]] | ||
[[Category: nmr solution structure]] | [[Category: nmr solution structure]] | ||
[[Category: paramagnetism-based constraint]] | [[Category: paramagnetism-based constraint]] | ||
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Sun Mar 30 21:52:20 2008'' |
Revision as of 21:52, 30 March 2008
| |||||||
Ligands: | |||||||
Related: | 1k31
| ||||||
Resources: | FirstGlance, OCA, PDBsum, RCSB | ||||||
Coordinates: | save as pdb, mmCIF, xml |
Family of NMR Solution Structures of Ca Ln Calbindin D9K
OverviewOverview
The relative importance of paramagnetism-based constraints (i.e. pseudocontact shifts, residual dipolar couplings and nuclear relaxation enhancements) with respect to classical constraints in solution structure determinations of paramagnetic metalloproteins has been addressed. The protein selected for the study is a calcium binding protein, calbindin D9k, in which one of the two calcium ions is substituted with cerium(III). From 1823 NOEs, 191 dihedral angles, 15 hydrogen bonds, 769 pseudocontact shifts, 64 orientational constraints, 26 longitudinal relaxation rates, plus 969 pseudocontact shifts from other lanthanides, a final family with backbone r.m.s.d. from the average of 0.25 A was obtained. Then, several families of structures were generated either by removing subsets of paramagnetism-based constraints or by removing increasing numbers of NOEs. The results show the relative importance of the various paramagnetism-based constraints and their good complementarity with the diamagnetic ones. Although a resolved structure cannot be obtained with paramagnetism-based constraints only, it is shown that a reasonably well resolved backbone fold can be safely obtained by retaining as few as 29 randomly chosen long-range NOEs using the standard version of the program PSEUDYANA.
About this StructureAbout this Structure
1KQV is a Single protein structure of sequence from Bos taurus. Full crystallographic information is available from OCA.
ReferenceReference
Paramagnetism-based versus classical constraints: an analysis of the solution structure of Ca Ln calbindin D9k., Bertini I, Donaire A, Jimenez B, Luchinat C, Parigi G, Piccioli M, Poggi L, J Biomol NMR. 2001 Oct;21(2):85-98. PMID:11727989
Page seeded by OCA on Sun Mar 30 21:52:20 2008