PhoP-PhoQ: Difference between revisions

Michal Harel (talk | contribs)
No edit summary
Michal Harel (talk | contribs)
No edit summary
Line 12: Line 12:
----
----


E. coli phoP is a 223 residue protein containing a 120-residue regulatory domain joined by a 5-residue linker to a 98 residue c-terminal DNA binding effector domain.<ref name=Bachhawat>PMID:17545283</ref> At a conserved Asp residue (<scene name='PhoP-PhoQ/Asp51-bef3/1'>Asp51 in this case</scene>), the regulatory domain can be modified by a phosphoryl group from the protein kinase function of phoQ. Phosphorylation of the regulatory domain modulates the activity of the effector domain to bind DNA and regulate transcription. Phosphorylated, or "activated" phoP binds to "phoP boxes" on bacterial DNA, which consist of two direct hexanucleotide repeats separated by a five nucleotide spacer located at the -35 position.<ref name=Bachhawat>PMID:17545283</ref>:
''E. coli'' phoP is a 223 residue protein containing a 120-residue regulatory domain joined by a 5-residue linker to a 98 residue c-terminal DNA binding effector domain.<ref name=Bachhawat>PMID:17545283</ref> At a conserved Asp residue (<scene name='PhoP-PhoQ/Asp51-bef3/1'>Asp51 in this case</scene>), the regulatory domain can be modified by a phosphoryl group from the protein kinase function of phoQ. Phosphorylation of the regulatory domain modulates the activity of the effector domain to bind DNA and regulate transcription. Phosphorylated, or "activated" phoP binds to "phoP boxes" on bacterial DNA, which consist of two direct hexanucleotide repeats separated by a five nucleotide spacer located at the -35 position.<ref name=Bachhawat>PMID:17545283</ref>:
(T/G)GTTTA
(T/G)GTTTA


Line 32: Line 32:


Spontaneous dimerization of the unactivated phoP regulatory domain can be observed in vitro, but is likely due to high concentration of the protein and may not occur in vivo. Although the dimerization of the unactivated phoP regulatory domain results in a homodimer similar to the activated homodimer, it is significantly less stable. Activation by the phosphoryl group helps to stabilize the <scene name='Sandbox_Reserved_344/Dimerization_surface/1'>α-4 helix, β-5 sheet and α-5 helix face</scene> dimerization interphase. Without the phosphoryl group, the two monomers dimerize in an asymmetric fashion that lends to molecular instability.
Spontaneous dimerization of the unactivated phoP regulatory domain can be observed in vitro, but is likely due to high concentration of the protein and may not occur in vivo. Although the dimerization of the unactivated phoP regulatory domain results in a homodimer similar to the activated homodimer, it is significantly less stable. Activation by the phosphoryl group helps to stabilize the <scene name='Sandbox_Reserved_344/Dimerization_surface/1'>α-4 helix, β-5 sheet and α-5 helix face</scene> dimerization interphase. Without the phosphoryl group, the two monomers dimerize in an asymmetric fashion that lends to molecular instability.
</StructureSection>
 
===PhoP-PhoQ and Virulence===
===PhoP-PhoQ and Virulence===


Line 44: Line 44:


Two component regulatory systems such as phoP-phoQ are obviously an attractive target for future antimicrobial drugs. If the phoP-phoQ can be altered to a dysfunctional state, the relevant bacteria would have decreased pathogenicity and increased suceptibility to nonspecific immune defense.
Two component regulatory systems such as phoP-phoQ are obviously an attractive target for future antimicrobial drugs. If the phoP-phoQ can be altered to a dysfunctional state, the relevant bacteria would have decreased pathogenicity and increased suceptibility to nonspecific immune defense.
</StructureSection>
== 3D Structures of  PhoP-PhoQ==
== 3D Structures of  PhoP-PhoQ==
Updated on {{REVISIONDAY2}}-{{MONTHNAME|{{REVISIONMONTH}}}}-{{REVISIONYEAR}}
Updated on {{REVISIONDAY2}}-{{MONTHNAME|{{REVISIONMONTH}}}}-{{REVISIONYEAR}}

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

Michal Harel, Andrew Brockfield, Alexander Berchansky