1hz3: Difference between revisions
No edit summary |
No edit summary |
||
Line 7: | Line 7: | ||
|ACTIVITY= | |ACTIVITY= | ||
|GENE= | |GENE= | ||
|DOMAIN= | |||
|RELATEDENTRY= | |||
|RESOURCES=<span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1hz3 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1hz3 OCA], [http://www.ebi.ac.uk/pdbsum/1hz3 PDBsum], [http://www.rcsb.org/pdb/explore.do?structureId=1hz3 RCSB]</span> | |||
}} | }} | ||
Line 14: | Line 17: | ||
==Overview== | ==Overview== | ||
The self-assembly of the soluble peptide Abeta into Alzheimer's disease amyloid is believed to involve a conformational change. Hence the solution conformation of Abeta is of significant interest. In contrast to studies in other solvents, in water Abeta is collapsed into a compact series of loops, strands, and turns and has no alpha-helical or beta-sheet structure. Conformational stabilization is primarily attributed to van der Waals and electrostatic forces. A large conspicuous uninterrupted hydrophobic patch covers approximately 25% of the surface. The compact coil structure appears meta-stable, and because fibrillization leads to formation of intermolecular beta-sheet secondary structure, a global conformational rearrangement is highly likely. A molecular hypothesis for amyloidosis includes at least two primary driving forces, changes in solvation thermodynamics during formation of amyloid deposits and relief of internal conformational stress within the soluble precursor during formation of lower-energy amyloid fibrils. | The self-assembly of the soluble peptide Abeta into Alzheimer's disease amyloid is believed to involve a conformational change. Hence the solution conformation of Abeta is of significant interest. In contrast to studies in other solvents, in water Abeta is collapsed into a compact series of loops, strands, and turns and has no alpha-helical or beta-sheet structure. Conformational stabilization is primarily attributed to van der Waals and electrostatic forces. A large conspicuous uninterrupted hydrophobic patch covers approximately 25% of the surface. The compact coil structure appears meta-stable, and because fibrillization leads to formation of intermolecular beta-sheet secondary structure, a global conformational rearrangement is highly likely. A molecular hypothesis for amyloidosis includes at least two primary driving forces, changes in solvation thermodynamics during formation of amyloid deposits and relief of internal conformational stress within the soluble precursor during formation of lower-energy amyloid fibrils. | ||
==About this Structure== | ==About this Structure== | ||
Line 38: | Line 38: | ||
[[Category: hydrophobic patch]] | [[Category: hydrophobic patch]] | ||
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Sun Mar 30 21:12:18 2008'' |