1his: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 7: Line 7:
|ACTIVITY=  
|ACTIVITY=  
|GENE=  
|GENE=  
|DOMAIN=
|RELATEDENTRY=
|RESOURCES=<span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1his FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1his OCA], [http://www.ebi.ac.uk/pdbsum/1his PDBsum], [http://www.rcsb.org/pdb/explore.do?structureId=1his RCSB]</span>
}}
}}


Line 14: Line 17:
==Overview==
==Overview==
Structures of insulin in different crystal forms exhibit significant local and nonlocal differences, including correlated displacement of elements of secondary structure. Here we describe the solution structure and dynamics of a monomeric insulin analogue, des-pentapeptide-(B26-B30)-insulin (DPI), as determined by two-dimensional NMR spectroscopy and distance geometry/restrained molecular dynamics (DG/RMD). Although the solution structure of DPI exhibits a general similarity to its crystal structure, individual DG/RMD structures in the NMR ensemble differ by rigid-body displacements of alpha-helices that span the range of different crystal forms. These results suggest that DPI exists as a partially folded state formed by coalescence of distinct alpha-helix-associated microdomains. The physical reality of this model is investigated by comparison of the observed two-dimensional nuclear Overhauser enhancement (NOE) spectroscopy (NOESY) spectrum with that predicted from crystal and DG/RMD structures. The observed NOESY spectrum contains fewer tertiary contacts than predicted by any single simulation, but it matches their shared features; such "ensemble correspondence" is likely to reflect the effect of protein dynamics on observed NOE intensities. We propose (i) that the folded state of DPI is analogous to that of a compact protein-folding intermediate rather than a conventional native state and (ii) that the molten state is the biologically active species. This proposal (the molten-globule hypothesis) leads to testable thermodynamic predictions and has general implications for protein design.
Structures of insulin in different crystal forms exhibit significant local and nonlocal differences, including correlated displacement of elements of secondary structure. Here we describe the solution structure and dynamics of a monomeric insulin analogue, des-pentapeptide-(B26-B30)-insulin (DPI), as determined by two-dimensional NMR spectroscopy and distance geometry/restrained molecular dynamics (DG/RMD). Although the solution structure of DPI exhibits a general similarity to its crystal structure, individual DG/RMD structures in the NMR ensemble differ by rigid-body displacements of alpha-helices that span the range of different crystal forms. These results suggest that DPI exists as a partially folded state formed by coalescence of distinct alpha-helix-associated microdomains. The physical reality of this model is investigated by comparison of the observed two-dimensional nuclear Overhauser enhancement (NOE) spectroscopy (NOESY) spectrum with that predicted from crystal and DG/RMD structures. The observed NOESY spectrum contains fewer tertiary contacts than predicted by any single simulation, but it matches their shared features; such "ensemble correspondence" is likely to reflect the effect of protein dynamics on observed NOE intensities. We propose (i) that the folded state of DPI is analogous to that of a compact protein-folding intermediate rather than a conventional native state and (ii) that the molten state is the biologically active species. This proposal (the molten-globule hypothesis) leads to testable thermodynamic predictions and has general implications for protein design.
==Disease==
Known diseases associated with this structure: Diabetes mellitus, rare form OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=176730 176730]], Hyperproinsulinemia, familial OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=176730 176730]], MODY, one form OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=176730 176730]]


==About this Structure==
==About this Structure==
Line 30: Line 30:
[[Category: hormone]]
[[Category: hormone]]


''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Thu Mar 20 11:37:37 2008''
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Sun Mar 30 21:05:41 2008''

Revision as of 21:05, 30 March 2008

File:1his.jpg


PDB ID 1his

Drag the structure with the mouse to rotate
Resources: FirstGlance, OCA, PDBsum, RCSB
Coordinates: save as pdb, mmCIF, xml



STRUCTURE AND DYNAMICS OF DES-PENTAPEPTIDE-INSULIN IN SOLUTION: THE MOLTEN-GLOBULE HYPOTHESIS


OverviewOverview

Structures of insulin in different crystal forms exhibit significant local and nonlocal differences, including correlated displacement of elements of secondary structure. Here we describe the solution structure and dynamics of a monomeric insulin analogue, des-pentapeptide-(B26-B30)-insulin (DPI), as determined by two-dimensional NMR spectroscopy and distance geometry/restrained molecular dynamics (DG/RMD). Although the solution structure of DPI exhibits a general similarity to its crystal structure, individual DG/RMD structures in the NMR ensemble differ by rigid-body displacements of alpha-helices that span the range of different crystal forms. These results suggest that DPI exists as a partially folded state formed by coalescence of distinct alpha-helix-associated microdomains. The physical reality of this model is investigated by comparison of the observed two-dimensional nuclear Overhauser enhancement (NOE) spectroscopy (NOESY) spectrum with that predicted from crystal and DG/RMD structures. The observed NOESY spectrum contains fewer tertiary contacts than predicted by any single simulation, but it matches their shared features; such "ensemble correspondence" is likely to reflect the effect of protein dynamics on observed NOE intensities. We propose (i) that the folded state of DPI is analogous to that of a compact protein-folding intermediate rather than a conventional native state and (ii) that the molten state is the biologically active species. This proposal (the molten-globule hypothesis) leads to testable thermodynamic predictions and has general implications for protein design.

About this StructureAbout this Structure

1HIS is a Protein complex structure of sequences from Homo sapiens. Full crystallographic information is available from OCA.

ReferenceReference

Structure and dynamics of des-pentapeptide-insulin in solution: the molten-globule hypothesis., Hua QX, Kochoyan M, Weiss MA, Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2379-83. PMID:1549601

Page seeded by OCA on Sun Mar 30 21:05:41 2008

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA