Proteins: primary and secondary structure: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 4: | Line 4: | ||
:*In this <scene name='60/603296/Primaria/2'>initial view</scene> we can see a short fragment of a polypeptide chain in order to analyze some features of its ''primary structure''. Atoms forming the chain ''backbone'' are disposed in zig-zag, as required by geometry of its bonding orbitals. Side chains of amino acid residues (or R groups) protrude outwards either side of backbone. | :*In this <scene name='60/603296/Primaria/2'>initial view</scene> we can see a short fragment of a polypeptide chain in order to analyze some features of its ''primary structure''. Atoms forming the chain ''backbone'' are disposed in zig-zag, as required by geometry of its bonding orbitals. Side chains of amino acid residues (or R groups) protrude outwards either side of backbone. | ||
:*Let's go now to a <scene name='60/603296/Primaria3/1'>peptide bond</scene> between two amino acid residues. Because phenomenon of resonance, peptide bond shows some features of a double bond, wich prevents free rotation of atoms on either bond side. So, six atoms marked in <scene name='60/603296/Primaria3/7'>rectangle</scene> on model window are always confined to the same rigid flat. We can test it by <scene name='60/603296/Primaria3/6'>activate rotation</scene>. | :*Let's go now to a <scene name='60/603296/Primaria3/1'>peptide bond</scene> between two amino acid residues. Because phenomenon of resonance, peptide bond shows some features of a double bond, wich prevents free rotation of atoms on either bond side. So, six atoms marked in <scene name='60/603296/Primaria3/7'>rectangle</scene> on model window are always confined to the same rigid flat. We can test it by <scene name='60/603296/Primaria3/6'>activate rotation</scene>. | ||
:*Polypeptide chain backbone consist in a monotonous succession in wich the following sequenze repeats: <scene name='60/603296/Primaria3/8'>alfa | :*Polypeptide chain backbone consist in a monotonous succession in wich the following sequenze repeats: <scene name='60/603296/Primaria3/8'>alfa carbon</scene>, <scene name='60/603296/Primaria3/9'>carboxyl group carbon</scene>, <scene name='60/603296/Primaria3/11'>amino group nitrogen</scene>. Minding the restrictions to free rotation in ''peptide bond'', we can visualize the polypeptide chain as a succession of <scene name='60/603296/Primaria3/12'>rigid flats</scene>. Each of these rigid flats can freely rotate respect each other. | ||
*'''Estructura secundaria'''.- | *'''Estructura secundaria'''.- In most proteins are two main types of secondary structure. | ||
:<scene name='60/603296/Secundaria/4'>Hélice alfa</scene>.- | :<scene name='60/603296/Secundaria/4'>Hélice alfa</scene>.- It is a helical structure with a thread pitch of 0.56 nm. Let's go to a <scene name='60/603296/Secundaria/5'>polar view</scene>. Now let's <scene name='60/603296/Secundaria/7'>hide hydrogen atoms</scene>. The polypeptide chain backbone is coiled and placed at the center of structure, while amino acid side chains protrude outward from this backbone. Let's <scene name='60/603296/Secundaria/8'>hide side chains</scene> for a better understanding. Now, let's back to a <scene name='60/603296/Secundaria/10'>side view</scene>. A <scene name='60/603296/Secundaria/11'>ribbon model</scene> highlights the helical folding of the backbone. Using again a <scene name='60/603296/Secundaria/12'>ball and stick model</scene> we recover <scene name='60/603296/Secundaria/13'>side chains</scene>, now highlighted with a spectral color series. ''Alfa helix'' structure becomes stabilized by many <scene name='60/603296/Secundaria/14'>hydrogen bonds</scene>. All peptide groups in the chain are involved in these hydrogen bonds. <scene name='60/603296/Secundaria/15'>Zoom in</scene> to a better understanding. | ||
:Lo que determina el que una cadena polipeptídica adopte una estructura secundaria en hélice alga o bien otro tipo de estructura secundaria es su secuencia de aminoácidos. Por ejemplo la naturaleza y posición en la cadena de los <scene name='60/603296/Secundaria/20'>residuos con carga eléctrica</scene> es determinante: si dos residuos con carga del mismo signo están situados muy próximos en la cadena, el plegamiento en hélice los obligará a acercarse todavía más, de manera que las interacciones repulsivas entre estas cargas destabilizarán la estructura. Por el contrario, si las cargas eléctricas son del mismo signo, la interacción atractiva entre ambas la estabilizará. Por otra parte,<scene name='60/603296/Secundaria/21'>tamaño de las cadenas laterales</scene> de los distintos residuos y sus posiciones relativas también tendrán una influencia decisiva: grupos R muy voluminosos y próximos entre sí provocarán impedimentos estéricos que dificultarán el plegamiento, mientras que la alternancia entre grupos R grandes y pequeños en las posiciones adecuadas lo facilitarán. | :Lo que determina el que una cadena polipeptídica adopte una estructura secundaria en hélice alga o bien otro tipo de estructura secundaria es su secuencia de aminoácidos. Por ejemplo la naturaleza y posición en la cadena de los <scene name='60/603296/Secundaria/20'>residuos con carga eléctrica</scene> es determinante: si dos residuos con carga del mismo signo están situados muy próximos en la cadena, el plegamiento en hélice los obligará a acercarse todavía más, de manera que las interacciones repulsivas entre estas cargas destabilizarán la estructura. Por el contrario, si las cargas eléctricas son del mismo signo, la interacción atractiva entre ambas la estabilizará. Por otra parte,<scene name='60/603296/Secundaria/21'>tamaño de las cadenas laterales</scene> de los distintos residuos y sus posiciones relativas también tendrán una influencia decisiva: grupos R muy voluminosos y próximos entre sí provocarán impedimentos estéricos que dificultarán el plegamiento, mientras que la alternancia entre grupos R grandes y pequeños en las posiciones adecuadas lo facilitarán. | ||
:'''<scene name='60/603296/Secundaria2/1'>Lámina beta</scene>'''.- La cadena polipeptídica adopta una disposición en zig-zag, que apreciaremos mejor si <scene name='60/603296/Secundaria2/2'>ocultamos los hidrógenos</scene> y si hacemos lo propio con <scene name='60/603296/Secundaria2/3'>las cadenas laterales</scene>. Obsérvese que una misma cadena polipeptídica puede presentar tramos rectilíneos con estructura secundaria en ''lámina beta'' separados por curvaturas con estructura en ''codo beta''. A continuación vamos a restituir las <scene name='60/603296/Secundaria2/4'>cadenas laterales</scene> a su lugar y a visualizar los <scene name='60/603296/Secundaria2/5'>puentes de hidrógeno</scene> entre distintos tramos de la cadena que estabilizan la estructura. Por último veamos la misma cadena polipeptídica representada mediante un <scene name='60/603296/Secundaria2/6'>modelo de cintas</scene>. | :'''<scene name='60/603296/Secundaria2/1'>Lámina beta</scene>'''.- La cadena polipeptídica adopta una disposición en zig-zag, que apreciaremos mejor si <scene name='60/603296/Secundaria2/2'>ocultamos los hidrógenos</scene> y si hacemos lo propio con <scene name='60/603296/Secundaria2/3'>las cadenas laterales</scene>. Obsérvese que una misma cadena polipeptídica puede presentar tramos rectilíneos con estructura secundaria en ''lámina beta'' separados por curvaturas con estructura en ''codo beta''. A continuación vamos a restituir las <scene name='60/603296/Secundaria2/4'>cadenas laterales</scene> a su lugar y a visualizar los <scene name='60/603296/Secundaria2/5'>puentes de hidrógeno</scene> entre distintos tramos de la cadena que estabilizan la estructura. Por último veamos la misma cadena polipeptídica representada mediante un <scene name='60/603296/Secundaria2/6'>modelo de cintas</scene>. |
Revision as of 13:59, 21 March 2016
|
|