1v4x: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 16: Line 16:
     <text>to colour the structure by Evolutionary Conservation</text>
     <text>to colour the structure by Evolutionary Conservation</text>
   </jmolCheckbox>
   </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1v4x ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
<div style="background-color:#fffaf0;">

Revision as of 10:12, 10 February 2016

Crystal structure of bluefin tuna hemoglobin deoxy form at pH5.0Crystal structure of bluefin tuna hemoglobin deoxy form at pH5.0

Structural highlights

1v4x is a 4 chain structure with sequence from Thunnus thynnus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:
NonStd Res:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

The crystal structure of hemoglobin has been known for several decades, yet various features of the molecule remain unexplained or controversial. Several animal hemoglobins have properties that cannot be readily explained in terms of their amino acid sequence and known atomic models of hemoglobin. Among these, fish hemoglobins are well known for their widely varying interactions with heterotropic effector molecules and pH sensitivity. Some fish hemoglobins are almost completely insensitive to pH (within physiological limits), whereas others show extremely low oxygen affinity under acid conditions, a phenomenon called the Root effect. X-ray crystal structures of Root effect hemoglobins have not, to date, provided convincing explanations of this effect. Sequence alignments have signally failed to pinpoint the residues involved, and site-directed mutagenesis has not yielded a human hemoglobin variant with this property. We have solved the crystal structure of tuna hemoglobin in the deoxy form at low and moderate pH and in the presence of carbon monoxide at high pH. A comparison of these models shows clear evidence for novel mechanisms of pH-dependent control of ligand affinity.

Novel mechanisms of pH sensitivity in tuna hemoglobin: a structural explanation of the root effect.,Yokoyama T, Chong KT, Miyazaki G, Morimoto H, Shih DT, Unzai S, Tame JR, Park SY J Biol Chem. 2004 Jul 2;279(27):28632-40. Epub 2004 Apr 26. PMID:15117955[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Yokoyama T, Chong KT, Miyazaki G, Morimoto H, Shih DT, Unzai S, Tame JR, Park SY. Novel mechanisms of pH sensitivity in tuna hemoglobin: a structural explanation of the root effect. J Biol Chem. 2004 Jul 2;279(27):28632-40. Epub 2004 Apr 26. PMID:15117955 doi:http://dx.doi.org/10.1074/jbc.M401740200

1v4x, resolution 1.60Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA