1d7e: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 17: Line 17:
     <text>to colour the structure by Evolutionary Conservation</text>
     <text>to colour the structure by Evolutionary Conservation</text>
   </jmolCheckbox>
   </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1d7e ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
<div style="background-color:#fffaf0;">

Revision as of 07:53, 10 February 2016

CRYSTAL STRUCTURE OF THE P65 CRYSTAL FORM OF PHOTOACTIVE YELLOW PROTEINCRYSTAL STRUCTURE OF THE P65 CRYSTAL FORM OF PHOTOACTIVE YELLOW PROTEIN

Structural highlights

1d7e is a 1 chain structure with sequence from Dsm 244. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum

Function

[PYP_HALHA] Photoactive blue light protein. Probably functions as a photoreceptor for a negative phototaxis response.

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

The conformational changes during the photocycle of the photoactive yellow protein have been the subject of many recent studies. Spectroscopic measurements have shown that the photocycle also occurs in a crystalline environment, and this has been the basis for subsequent Laue diffraction and cryocrystallographic studies. These studies have shown that conformational changes during the photocycle are limited to the chromophore and its immediate environment. However, spectroscopic studies suggest the presence of large conformational changes in the protein. Here, we address this apparent discrepancy in two ways. First, we obtain a description of large concerted motions in the ground state of the yellow protein from NMR data and theoretical calculations. Second, we describe the high-resolution structure of the yellow protein crystallized in a different space group. The structure of the yellow protein differs significantly between the two crystal forms. We show that these differences can be used to obtain a description of the flexibility of the protein that is consistent with the motions observed in solution.

Conformational substates in different crystal forms of the photoactive yellow protein--correlation with theoretical and experimental flexibility.,van Aalten DM, Crielaard W, Hellingwerf KJ, Joshua-Tor L Protein Sci. 2000 Jan;9(1):64-72. PMID:10739248[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. van Aalten DM, Crielaard W, Hellingwerf KJ, Joshua-Tor L. Conformational substates in different crystal forms of the photoactive yellow protein--correlation with theoretical and experimental flexibility. Protein Sci. 2000 Jan;9(1):64-72. PMID:10739248

1d7e, resolution 1.39Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA